
A COMPARISON OF FORCE

CONTROL ALGORITHMS FOR ROBOTS

IN CONTACT WITH

FLEXIBLE ENVIRONMENTS

by

Lee S. Wilfinger

Rensselaer Polytechnic Institute

Electrical, Computer, and Systems Engineering

Troy, New York 12180-3590

December 1992

CIRSSE REPORT #135

CONTENTS

LIST OF TABLES vi

LIST OF FIGURES vii

ABSTRACT x

1. Introduction 1

1.1 Motivation for Force Control 2

1.2 Literature Review 3

1.3 Summary of Topics 5

1.4 Notation and Conventions 6

2. Description of Testbed 9

2.1 Hardware 9

2.1.1 Sun Network O

2.1.2 VME cage 11

2.1.3 PUMA 600 11

'2.1.4 Platform 11

2.1.5 Force Sensor 12

2.1.6 Gripper and Load 12

2.1.7 Support Stand 12

'2.2 Software 14

2.2.1 Software Environment 14

2.2.2 Hierarchy of Force Control Code 18

.

2.2.3 Further Description of Force Control Code 24

Theory and Implementation of Position Accommodation Force Control . . 28

3.1 Theory 28

3.1.1 Description 28

3.1.2 PAC Is an Integral Force Control Algorithm 29

3.2 Implementation 33

3.2.1 Description of Basic Algorithm 33

ii

3.2.2

3.2.3

3.2.4

3.2.5

Second Order Equations 35

First Order Equations 37

Translating Forces From the Sensor Frame to The Tool Frame 37

Forward Differencing Versus Backward Differencing 39

3.3

3.3.1

3.3.2

3.3.3

3.3.4

Discussion 43

Force Sensor 43

Singularities 44

PAC Architecture 45

Effect of Spring Term In PAC Algorithm 46

3.4 Summary 47

4. Theory and Implementation of Direct Force Servoing 48

4.1 Theory 48

4.1.1 Description 48

4.1.2 DFS Does Not Produce Straight-Line Cartesian Motion . . . 49

4.1.3 Direct Proportional Force Control Is Not Robust With Re-

spect To Time Delay 50

4.2 Implementation 52

4.2.1 Description Of Basic Algorithm . : 52

4.2.2 Discrete--Time Equations 54

4.3 Discussion 54

4.3.1 Force Sensor 55

4.3.2 Singularities 55

4.3.3 DFS Architecture 55

4.3.4 Gravity Compensation 56

4.4 Summary 56

5. Results of Force Control Experiments With Flexible Surfaces 57

5.1 Motivation 57

5.2 Model of Environment 57

5.3 Description of Experimental Setup 59

5.3.1

5.3.2

5.3.3

5.3.4

Varying Force Control Parameters 59

Followup Experiments 60

Use Of Gripper 61

Sampling Rates 61

*.°

Ill

5.4 Experimental Results - Position Accommodation Control 62

5.4.1 Varying The Mass Term 62

5.4.2 Varying The Damping Term 66

5.5 Experimental Results - Direct Force Servoing 72

5.5,1 Direct Integral Force Control 7:3

5.5.2 Direct Proportional Force Control 79

5.6 Summary 81

6. Improvements to the Direct Force Servoing Algorithm 82

6.1 Motivation 82

6.2 Modifications to the Basic DFS Algorithm 8,5

6.2.1 Integral Error Scaling 85

6.2.2 Variable Desired Force 88

6.2.3 Force Signal Clipping and Integral Windup Prevention 9:3

6.2.4 Combined Modifications 96

6.3 Summary 98

7. Further Discussion of Position Accommodation Control and Direct Force

Servoing 99

7.1 Introduction 99

7.2 Choosing Gains In a Flexible Environment 99

7.2.1 Position Accommodation Control 99

7.2.2 Direct Force Servoing 101

7.3 Qualitative Comparison of Force Control Algorithms 108

7.4 Summary 111

8. Conclusions and Future Research 112

8.1 Summary and Conclusions I12

8.2 Future Research 113

8.2.1

8.2.2

8.2.3

8.2.4

8.2.5

Friction Identification and Compensation 113

Estimation of Environmental Flexibility 114

Cartesian Motion and DFS 114

Hybrid Force and Position Control 114

Active biasing of force sensor 115

iv

8.2.6 Velocity observer 115

8.2.7 Two Arm Force Control 116

LITERATURE CITED :.. 117

APPENDICES 120

A. Derivation of Gravity Compensation Equations 120

A.1 Notation and Conventions 120

A.2 High Level Equations 123

A.3 Scalar Form of Gravity C!ompensation Equations 126

A.4 Gripper and Load 128

A.5 Comparison With Other Work 129

B. Derivation of Computationally Efficient PUMA Jacobian Equations 131

B.1 Notation and Conventions 131

B.2 Background 131

B.3 "Velocity and Coordinate Frame Transformations 132

B.3.1 Velocity Frames 132

B.3.2 Coordinate Frames 132

B.3.3 Use of Transformations 133

B.4 Forward Jacobian 134

B.4.1 Coordinate Frame k _< 6: 134

B.4.2 Coordinate Frame k > 6: 135

B.4.3 Without Tool Transform 136

B.5 Forward Jacobian Transpose 136

B.5.1 Coordinate Frame k _< 6: 137

B.5.2 Coordinate Frame k > 6: 137

B.5.3 Without Tool Transform 138

C. Mass Matrix and Control Gains For the PUMA Joint Controller 13.9

C.1 Notation and Conventions 13!t

C.2 Background 139

C.3 PID Control Gains 140

C.4 PD Control Gains 14{}

C.5 Approximation of PUMA Mass Matrix 141

v

2.1

5.1

5.:2

5.3

5.4

5.5

7.1

A.1

C.1

C.2

LIST OF TABLES

Distribution of Processes on VME Cage 2t

Relative flexibility' of surfaces use([in contact experiments 58

Lowest stable PAC damping values found for various surfaces.

Gripper started approximately 1.5 mm at)ove surface 67

Lowest stable PAC damping values found for various surfaces.

Gripper started on surface exerting a force of 1 Newton. . . 67

Range of DFS gains for which force control is stable. Gains

were varied separately. Gripper started 1.,5 mm above surface. 72

Range of DFS gains for which force control is stable. Gains

were varied separately. Gripper started on surface exerting a

force of 1 Newton 72

Summary of Comparison of PAC and DFS algorithms 111

Masses and Centers of Gravity of tile PUMA Arm Links 127

PID Control Gains and Filter Cutoff Frequency (Sampling

Rate = 4.,5 milliseconds) 140

PD Control Gains and Filter Cutoff Frequency (Sampling

Rate = 4.5 milliseconds) 14I

vi

2.1

2.2

2.3

2.4

2.5

2.6

2.7

3.1

3.2

3.3

4.1

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

LIST OF FIGURES

CIRSSE Computer Network and VME Cage 10

CIRSSE VME Cage and Connection to Testbed 10

View of Test Setup for Force Control Experiments 13

Second View of Test Setup for Force Control Experiments . . 13

Location of CTOS Code Layer 16

Effect of synchronization on task execution 17

Relative Hierarchy of Major Code Components 18

Model of Mass-Spring-Damper System 28

Block Diagram of Components Used in PAC Force Control . . 34

Two Frames Connected By a Rigid Link 38

Block Diagram of DFS Force Control 53

Model of Environment 58

Effect of Increasing Mass Term in Position Accommodation

Control: Force Profiles 64

Effect of Increasing Mass Term in Position Accommodation

Control: Position Profiles 64

Effect of Increasing Mass Term in Position Accommodation

Control: Force Profiles 65

Effect of Increasing Mass Term in Position Accommodation

Control: Position Profiles 65

Effect of

Control:

Effect of

Control:

Effect of

Control:

Lowering Damping Term in Position Accommodation
Force Profiles 68

Lowering Damping Term in Position Accommodation

Position Profiles 68

Lowering Damping Term in Position Accommodation

Force Profiles 69

vii

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

5.22

6.3

Effectof LoweringDampingTerm in PositionAccommodation
Control: Position Profiles 69

Lowering Damping Term Too Far Will Cause Instability.in

PAC Algorithm 70

PAC Damping Term May Be Reduced By Starting In Contact

With Surface 70

Damping Term Can Be Reduced Much More When Contact-

ing Plastic Ball 71

Performance Of Direct Integral Force Control Algorithm on

Wood: K_ = 5.0, 10.0 74

Performance Of Direct Integral Force Control Algorithm on

Wood: K_ = 20.0, 30.0 74

Integral Force Gain Is Severely Limited on Plastic Ball 75

Integral Gain Can Be Increased When Starting In Contact

With The Aluminum Surface 76

Performance Of Basic Integral Force Control Algorithm on
Plastic Lid: Force Profile 77

Performance Of Basic Integral Force Control Algorithm on
Plastic Lid: Position Profile 77

Performance Of Direct Integral Force Algorithm on Plastic

Ball: Force Profile 78

Performance Of Direct Integral Force Algorithm on Plastic
Ball: Position Profile 78

Small Proportional Gains May Cause Instability" On Aluminum:

Force Profile 80

Proportional Gain Can Be Increased When Starting In Con-

tact With Aluminum Surface 80

Typical Performance OF DFS on Aluminum 82

Disturbance Induced Instability in Basic DFS Algorithm: Force

Profile 84

Disturbance Induced Instability in Basic DFS Algorithm: Po-

sition Profile 84

viii

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

7.1

7.2

7.3

7.4

A.1

A.2

Effect of Scalingthe Integral Error Term in DFS Algorithm 87

DFS Algorithm With Integral Error Scaling 87

DisturbanceRejectionof DFS Algorithm With Integral Error
Scaling 88

Modifying fu Based on Filtered Force Readings 90

Effect of Modifying the Desired Force Based on Contact Force 91

Result of Excessive Filtering on Desired Force Trajectory . . 92

Disturbance Rejection of DFS Algorithm With Force Trajectory 93

DFS Algorithm With Control Signal Clipping and Integrator

Windup Prevention 95

Disturbance Rejection of DFS Algorithm With Control Signal

Clipping and Integrator Windup Prevention 95

Disturbance Rejection of DFS Algorithm With All Improve-
ments: Force Profile 97

Disturbance Rejection of DFS Algorithm With All Improve-

ments: Position Profile 97

Integral Error Scaling Allows Higher Integral Gains 103

Still Higher Gains Can Be Achieved By Reducing Beta 103

Relationship Between Filtered and Desired Force Must be

Chosen Carefully 106

Effect of Poor Relationship Between Filtered and Desired Force l06

Last Two Links of Robot Arm 123

Last Three Links of Robot Arm 124

ix

ABSTRACT

In order to perform useful tasks, the robot end-effector must come into contact

with its environment. For such tasks, force feedback is frequently used to control

the interaction forces. Control of these forces is complicated by the fact that the

flexibility of the environment affects the stability of the force control algorithm.

Because of the wide variety of different materials present in everyday environments,

it is necessary to gain an understanding of how environmental flexibility affects the

stability of force control algorithms.

This report presents the theory and experimental results of two force con-

trol algorithms: Position Accommodation Control and Direct Force Servoing. The

implementation of each of these algorithms on a two-arm robotic testbed located

in the Center for Intelligent Robotic Systems for Space Exploration (CIRSSE) is

discussed in detail. The behaviour of each algorithm when contacting materials of

different flexibility is experimentally determined. In addition, several robustness im-

provements to the Direct Force Servoing algorithm are suggested and experimentally

verified. Finally, a qualitative comparison of the force control algorithms is provided,

along with a description of a general tuning process for each control method.

X

CHAPTER 1

Introduction

Force control (or compliance control) is the control of the forces which are exerted

by a robot on the environment. These forces are applied via the end-effector of the

robot, and are ultimately controlled by controlling the motor torques of the robot

joints. Force control algorithms can be roughly divided into two categories:

* direct methods

• indirect (impedance-based) methods

Direct methods control forces exerted by the robot by controlling joint torques.

The forces measured at the end-effector are used to directly calculate joint torques

by using the transpose Jacobian of the robot arm. The control law often involves

a proportional or integral term. as well as a feedforward term. Throughout this

document, this type of control will be referred to as Direct Force Servoing (DFS).

Indirect methods control forces by controlling end-effector positions. Force

errors are converted to position errors, allowing a position-based control loop to

drive the robot joints. Conversion of the force error into a position error is often

done using a mass-spring-damper relationship; the resulting system causes the end-

effector to respond to forces in a manner similar to a mass-spring-damper system.

Two examples of indirect algorithms are Position Accommodation Conlrol

(PAC) and Impedance Control. In Position Accommodation, the impedance rela-

tionship is commanded by providing the appropriate position setpoints to a joint

controller. The position setpoints are generated based on the force error, according

to a mass-spring-damper equation.

Impedance control produces similar end-effector behaviour, but is more com-

plicated. Feedback linearization is used to cancel out the nonlinear robot dynamics.

As in the PAC algorithm, the end-effector responds to force errors according to a

mass-spring-damper relationship.

1.1 Motivation for Force Control

In order to perform most useful tasks, a robot must come into contact with its

environment. Many of these tasks require that the interaction forces be held within

some range. Examples of such tasks include the handling of fragile payloads, the

insertion and removal of parts, and deburring and machining.

In an ideal environment, the objects in the environment would be modeled

precisely, and the robot end-effector could be positioned exactly. In such a situation,

the forces on the environment could be controlled by sensing and controlling the

position of the end-effector.

In a typical environment however, the location of objects is not known pre-

cisely. There may also be unknown objects in the robot workspace. In addition,

the positioning accuracy of real robots is not perfect. Without compliance control,

the robot may damage itself and its environment when it comes into contact with

objects in its workspace. For this reason, force control is a necessary part of a robot

control system.

In addition to allowing the robot to safely contact the environment, the force

control algorithm should permit the robot to apply some desired force to the object

being worked on. These tasks are complicated by the fact that different objects have

varying degrees of flexibility, which will affect the stability of the force controller.

Thus, a force control algorithm tuned for one type of surface may not work well

when the robot encounters a different surface.

There are a myriad of different materials which exist in everyday environments;

wood, cloth, rubber, glass, cardboard, and plastic are only a few examples. Each

of these materials will react to a force differently. For a given force, each material

o "

will deform to a different degree. Further, when the applied force is removed, each

material will return to its original shape at different rates. In order to operate safely

within its environment, the robot should be able to come into contact witl:i a wide

variety of different materials.

The motivation for this report stems fi-om this basic problem of allowing a

robot to safely contact objects in an uncertain environment. It is necessary to gain

an understanding of how environmental flexibility affects the behaviour and stability

of force control algorithms. In order to acquire this knowledge, a number of different

experiments were conducted using both the Position Accommodation Control and

Direct Force Servoing algorithms.

The equations of the basic PAC and DFS algorithms were determined and

examined in order to understand the behaviour of the algorithms. To confirm the

theory, both control algorithms were implemented on the CIRSSE two-arm robotic

testbed. A number of experiments were then conducted to verify the performance of

the basic force control algorithms. In order to determine the effect of environmental

flexibility on the behaviour of each control algorithm, the robot was commanded to

contact a variety of different surfaces, and apply a constant force.

In order to improve the performance of the DFS controller, the basic algo-

rithm was augmented to make it more robust with respect to disturbances and

impact forces. These modifications were then experimentally verified by applying a

disturbance to the robot while it was pushing on its environment with a constant

force.

1.2 Literature Review

Many force control algorithms have been proposed in recent years. A small

sample of the vast amount of research being done in this field is listed below. Whit-

ney [1] provides an interesting historical perspective on the force control problem,

and outlines a number of different approaches that have been tried.

Hogan [2] presents the theory of impedance control. He also discusses issues

related to the implementation of this control method.

Raibert and Craig [3] implemented a direct force controller on a modified

Scheinman robot arm as part of a hybrid position/force control system. The feed-

back control law that was used was a PI-type. In contrast to most of the literature,

their control law converted force errors from Cartesian space to joint space before

applying the PI control law.

Khatib and Burdick [4] implemented direct proportional force control on a

PUMA 560 arm equipped with a wrist force sensor. An active damping term was

also included in the control law in order to improve the stability of the system.

An and Hollerbach [5] implemented a direct proportional force control algo-

rithm on a three-link direct drive arm, in which the third link was purely force-

controlled. In addition, they performed experiments in which the robot came in

contact with aluminum and hard rubber surfaces. They noted that the algorithm

had problems with stiffer surfaces like aluminum, but worked better with more com-

pliant surfaces. They advocated putting a low-pass filter in the forward control loop

to improve the stability properties of the controller.

Wedel and Saridis [6] discuss the implementation of a direct proportional force

controller on a PUMA 560 arm with a 6 Degree Of Freedom (DOF) force sensor.

Their work was based heavily on the hybrid force control algorithm proposed by

Raibert and Craig, although the proportional control law operated on the Cartesian

force error before converting to joint space. They noted significant steady state error

in the force measurements. They also noted that the control algorithm tended to

be unstable when the robot contacted stiff surfaces.

Wen and Murphy [7, 8] have looked at both Direct Force Servoing and Position

Accommodation Control from a theoretical point of view. They have observed that

5

direct integral force control is more robust than direct proportional force control

with respect to time delay in the control loop. In addition, direct integral force

control has better steady state error characteristics. "

The observations made by Wen and Murphy have been confirmed by experi-

mental results performed by Volpe [9]. Volpe and Khosla [10, 11] have implemented

.direct integral force control on the six-axis CMU DD Arm II. The control law that

was used included an active damping term like that used in [4]. In addition to in-

tegral force control, Volpe and Khosla have experimented with direct proportional

force control (with active damping) and impedance control.

1.3 Summary of Topics

The following topics are discussed in this report. Chapter 2 discusses the

CIRSSE testbed, and the software which was used to perform all of the experiments

described in this document. Chapters 3 and 4 discuss the theory and implementa-

tion of the Position Accommodation Control and Direct Force Servoing algorithms,

respectively. Chapter 5 describes the experiments which were performed on the

CIRSSE testbed, and discusses some of the results which were obtained. Chap-

ter 6 recommends some modifications to the Direct Force Servoing algorithm, and

presents experimental justification for the alterations. Chapter 7 compares the PAC

and DFS algorithms on a number of issues, and also presents a general tuning pro-

cess for each control algorithm. Finally, Chapter 8 summarizes the work presented

here, and suggests avenues of future research.

Appendices A and B discuss the derivation of the gravity compensation and

Jacobian equations, which form the basis for two real-time libraries used by the

force control software. These libraries were essential to the implementation of both

force control algorithms, and are discussed in Chapter 2.

Appendix C provides additional information on the robot joint controllers,

6

which were implemented as part of the force control code presented in Chapter 2.

The research code outlined in Chapter 2 is not presented in this work, due its

size. However, a copy of the research code, the collected data, and an electronic

version of this document have been archived. Interested parties may contact the art-

thor at the Center for Intelligent Robotic Systems for Space Exploration, Rensselaer

Polytechnic Institute, Troy, New York 12180.

1.4 Notation and Conventions

The following is a list of the notation and conventions used throughout this

document:

• The term "end-effector" is used synonymously with "tool" and "gripper".

• Continuous fimctions of time are indicated with parentheses; for example:

f(t). Discrete-time fimctions are indicated using square brackets, as in: f[k].

• The coordinate frames of the CIRSSE testbed arm are labeled 1 - 9; frame 0

is the global origin [12]. An E denotes the end-effector frame.

• Due to the design of the CIRSSE testbed arm, the joints of the PUMA (the

PUMA is considered to be part of the full arm) are labeled 4 - 9. The subscript

labels of parameters reflect this convention as well. Thus, link 6 of the PUMA

is considered link 9 of the arm, and the mass of this link would be labeled rag.

Estimated values will be specified with hat symbols over them. Thus, an

estimate of the acceleration due to gravity would be designated as _, while the

actual value would be specified as g.

• kPi,j iS the 3 x 1 vector describing the position of frame j with respect to

frame i, expressed in the coordinates of frame k. Under many circumstances,

7

k = i. In this case, the i subscript will be dropped; thus, kpk,i = kpj. Note

k
that kpi,j -- -- pj,i.

i
• jR is the 3 × 3 rotation matrix describing the orientation of frame j with

respect to frame i.

i
• iT is the 4 × 4 homogeneous transformation describing the position and ori-

entation of frame j with respect to frame i. Thus:

[]i j R lpj

iT= 0 I

For a detailed discussion on the subject of homogeneous transforms, the reader

is referred to [13].

• k:_i,j is the 3 × 3 cross product matrix associated with the vector kpl,j, expressed

in the coordinates of frame k:

0

k-
k Zpi,j= p,,s()

-'%,j(z)

0 - kp ,j(z)

kp ,j(z) 0

The arguments x, y, and z in the above matrix represent the three components

of the vector kpi,j. The term "cross product matrix" indicates that for any

3 × 1 vector kw, the following equation holds:

k- k k k
Pi,j w-" Pi,j × w

It should be noted that the following equation also holds for cross product

matrices: _R k/_i,j JR = I/5i,_

k •

xi,j is the velocity of frame j with respect to frame i, expressed in the coor-

dinates of frame k. This is a 6 × t vector; the first three components of this

vector are the linear velocity and the last three are the angular velocity:

kXi, j = ..

ka¢

Note that under many circumstances, k = i. In this case, the i subscript will

• k °

be dropped; thus kxk,j = zj.

CHAPTER 2

Description of Testbed

This chapter describes the hardware and software which comprise the CIRSSE

testbed. The first section discusses the hardware used in the force control experi-

ments. The second section discusses the software which controlled the experiments,

how the software was organized, and the function of each major software module.

2.1 Hardware

This section discusses the testbed at CIRSSE upon which all force control

experiments were performed. Figures 2.1 and 2.2 show a portion of the CIRSSE

Sun-based computer network, and its connection to the CIRSSE testbed. The

testbed consists of two 9 DOF robot arms. Each arm consists of a PUMA arm

(either a PUMA 560 or PUMA 600), mounted on a 3 DOF platform. Each arm is

equipped with a force sensor and specialized gripper, and is controlled by a VME

cage with multiple processors.

All force control experiments discussed in this report were run on only one

of the arms. For this reason, further description of the testbed only mentions the

single arm (and its sensors) used in the experiments.

2.1.1 Sun Network

At CIRSSE, there are a number of Sun workstations which are connected

together via an Ethernet link. The VME cage which controls the testbed is also

connected to this network. This allows users to compile their code on the Suns, and

then download the code to the cage for execution. Further, any data that is collected

from experiments can be efficiently sent to the Suns for analysis and storage.

l0

RPI Ethemet----_

Ral

Sol
Venus

Sun 4 Sun 4

Earth

Sun4

Mars

Sun4

CIRSSE EthemetJ

-Ivxoli
W_Ca_°I I I

)- I VX_

Figure 2.1: CIRSSE Computer Network and VME Cage

¢.-- VMEI_s

vx0 vxl

Grivp*rt,

i

Robot Arm

Figure 2.2: CIRSSE VME Cage and Connection to Testbed

ll

2.1.2 VME cage

The VME cagecurrently contains5 single-boardprocessors;two MVME-135

and three MVME-147 boards. The processorsrun VxWorks, a real-time"UNIX-

basedoperating system,which providesa convenientenvironment for writing and

testing real-time software.A moredetaileddescriptionof the softwareusedin this

researchis provided later in this chapter.

The cagealsocontainsMVME-360A Parallel Interface/Timer (PI/T) boards

for peripheral devicesand sensors,as well as VMEbus-Q Bus adapter cards for

communication with the Unimate controllers. In addition, the cagecontains a 4-

Megabyteshared memory card. This memory is accessibleto all processors,and

providesa convenientmechanismfor tasksto communicate.

2.1.3 PUMA 600

The PUMA 600 is a 6 DOF industrial robot arm built by Unimation, Inc.

Such robots are widely used for researchat academicinstitutions, and represent

commonly availabletechnology.

PUMA arms are normally controlled using the VAL programminglanguage.

The controller units of the PUMAs at CIRSSEhavebeenmodified, however,sothat

VAL is not longerneeded.Instead,aVMEbus-Q businterfaceconnectsthe Unimate

controller to the VME cage,allowing the robots to becontrolledby tasksrunning on

the VME cage.In this configuration, the controller unit acts as a hardware interface

and power supply for the PUMA.

2.1.4 Platform

Each PUMA is mounted on a 3 DOF platform to form a 9 DOF arm. See

Figures 2.3 and 2.4. Due to its range of motion, this platform extends the workspace

of the PUMA considerably. In addition, it allows users to conduct experiments in the

[2

areaof redundant manipulators. For the researchwork presentedhere,the platform

wasusedasa rigid basewhichcould beeasilypositionednear the compliant surfaces

to be tested. The platform waskept level for all of the forceexperiments,]n order

to help maintain a commonrobot configuration acrossall of the experiments that

wereperformed.

2.1.5 Force Sensor

The PUMA 600 is equipped with a Lord 15/50 force sensor. This 6-axis sensor

can read forces of up to 15 pounds and torques of up to 50 inch-pounds, and has

a maximum sampling rate of 300 Hz. [14]. The force sensor is mounted rigidly

on the flange of the PUMA arm. The force sensor controller unit was interfaced

to the VME cage via an MVME-a60A PI/T board. During normal operation, the

force sensor transmits strain gauge signals to the VME cage. A driver routine then

converts these numbers into forces and torques felt at the force sensor.

2.1.6 Gripper and Load

An aluminum end-effector is attached rigidly to the end of the force sensor

on the robot arm. This gripper is electronically controlled and uses pneumatics to

open and close the fingers. During force experiments, the gripper was required to

hold a small object and apply force to the environment through this object.

2.1.7 Support Stand

All compliant surfaces were supported by a rectangular steel table (represented

in Figures 2.3 and 2.4 as a box). The table brought the materials to be tested up

to a height which was well inside the PUMA workspace, and thus easily reachable

by the PUMA.

° "

13

Figure 2.3: View of Test Setup for Force Control Experiments

/

Figure 2.4: Second View of Test Setup for Force Control Experiments

°

14

2.2 Software

This section details the software that was written and used to conduct force

control experiments on the testbed hardware. The software written for this report is

quite extensive. Furthermore, the software is supported by a number of additional

layers of code.

The software is discussed in three parts. First, the software environment in

which the force control code executes is discussed. Next, the overall hierarchy of

the force control code is described. Finally, the code is discussed in depth, from the

code that was allocated to specific processors to a brief description of each major

code library that was used for the experiments.

2.2.1 Software Environment

All code written to run on the CIRSSE testbed is actually supported by two

layers of code, VxWorks and CTOS. These layers are described in the next section.

2.2.1.1 VxWorks

All of the processors in the VME cage run VxWorks. VxWorks is a UNIX-

based real-time operating system produced by Wind River Systems, Inc. This

operating system is relatively easy for programmers to use, because it has several

important features [15, 16]:

• Close network compatibility with UNIX- this allows processes running under

UNIX and VxWorks to communicate with each other efficiently.

• Extensive run time libraries - these include string and math libraries, linked

list manipulation commands, and others. This provides a good foundation for

code being written to execute under VxWorks; the very low-level code has

already been written for the programmer.

15

• Object code compatibility with UNIX- this provides programmers with a very

convenient development feature. Code can be written and compiled on the

Sun workstations using standard UNIX tools (C compilers, assemblers_'editors,

etc.), The object code is then downloaded to the cage for execution.

• Dynamic linking of object modules at load time - the object modules are linked

automatically upon downloading. No code needs to be linked ahead of time

under the UNIX environment, since all linking is done on the VxWorks side

at load time.

• An interactive shell for debu99in9 and development - this allows users to in-

teractively test and execute the code that is downloaded onto the VME cage

processors. Once an object module is downloaded, the user has immediate

access to all functions which are contained in the module. The functions can

be called by name at the shell prompt.

All of these features of VxWorks give programmers a convenient, flexible en-

vironment for writing, testing, and running real-time code.

2.2.1.2 CTOS

VxWorks provides an excellent foundation for writing real-time code to control

the CIRSSE testbed. However, there are some features that were needed which

VxWorks lacks. For example, there is no standard way for tasks to communicate

between processors. In order to supply some of the missing features, a body of code

called CTOS was written.

CTOS is an acronym for "CIRSSE Testbed Operating System" and is the name

of a layer of software which runs above the VxWorks real-time operating system,

augmenting it [16]. See Figure 2.5. In addition, CTOS applications can run under

UNIX, and communicate to processes on the VME cage. CTOS provides several

16

Applications

Motion Control Code

CTOS

VxWorks

I
t

I

UNIX

VME Cage Sun Workstations

................... J.

Figure 2.5: Location of CTOS Code Layer

features which VxWorks alone does not possess:

• Inter-processor semaphores - similar to conventional semaphores, these pro-

vide mutual exclusion for shared resources. Typically, conventional semaphores

are implemented for efficient use by tasks executing on the same processor.

However, semaphores which are used between processors are not implemented

as efficiently, in general. For example, busy-waiting techniques might be en_t-

ployed.

Inter-processor semaphores are designed to work efficiently between processors.

Tasks on one processor can be blocked waiting for a resource being used by a

task on a different processor.

• Inter-processor blocks (IPBs) - these are similar to semaphores, but function

slightly differently. There is no ordering of the give and take operations on a

semaphore; a task can give a semaphore before a second task takes it. In such

a case, the second task is not blocked. With inter-processor blocks, a task

which takes the block will always be blocked until it is released (the release

t7

must come after the block) by another task. Thus, there is a specific ordering

which must be followed when using the IPBs.

• Process synchronization across CPUs- Individual processors can easily regu-

late their own processes. With the proper initialization for example, a task

might be unblocked to run every 5 milliseconds. A problem arises, however,

when there are tasks on multiple processors that need to be synchronized

(Figure 2.6A).

CTOS provides a mechanism for ensuring that processes on different proces-

sors start at the same time, and remain synchronized. Therefore, tasks on

different processors that have the same period of execution will be released

"simultaneously" every period (Figure 2.6B).

Processor 1

5ms

5ms

5ms

5m_

Processor 2

5ms

5ma

5n_

Processor 1

5r_

5n._

5r_

5r_

Pro_s_r2

5ms

5ms

_ms

(A) Without Syncronization (B) With Syncronization

Figure 2.6: Effect of synchronization on task execution

• Easy distribution of tasks on each CPU- while booting the VME cage, CTOS

requires a configuration file which lists the processes to be started and the

18

processorsto run the tasks on. It is a simple matter for the user to add or

delete tasks from the list, or move tasks from one processor to another. The

changes take effect when the VME cage is rebooted.

• Message passing between tasks - CTOS also supports message passing to ap-

plications running on the Sun workstations or the VME cage. This provides a

valuable mechanism for communication between tasks on different processors.

This allows tasks to transfer data conveniently from the VME cage to the

workstations, where it can be stored for later analysis. It also allows the user

interface to reside on the UNiX-based machines, so that standard Graphic

User Interfaces (GUIs) such as X-Windows can be used.

2.2.2 Hierarchy of Force Control Code

This section describes each major component comprising the force control

system, and the force control code used to conduct experiments.

State
Manager

.[Application Code ',<

._ Trajectory Generator _---

i Interpolation Layer i
i

i -I

PUMA Controller]

--- PUMA Channel Driver l

i pumaLib :
i r

[] = Tasks

,.-o_
,_._, -" Code Libraries

[] = Data Structures

Shared Memory

Interface
tr

[FrS Channel Driver I

i ftsLib i
I r

Figure 2.7: Relative Hierarchy of Major Code Components

_9

Figure 2.7 shows the major components of the research code [16]. These in-

clude the application, trajectory generator, interpolator, joint controller, channel

drivers, and state manager. The arrows in the figure indicate the communication

paths between the pieces of code. Each part is described in more detail below.

2.2.2.1 Application

The application is a layer of code which provides the user interface. High level

commands such as starting up and shutting down the testbed, and reading joint

positions are available. In addition, commands are provided to allow the user to

change motion control modes easily. Thus, the user has the ability to easily position

the arm at a certain location and start a force control experiment.

In a typical robot control situation, the application would be the layer which

would generate knotpoints for the trajectory generator to process. In this case, the

user generates a knotpoint when the destination position of the robot is specified.

2.2.2.2 Trajectory Generator

The trajectory generator (TG) is the code layer which takes knotpoints from

the application code, and generates more finely spaced setpoints for the joint con-

troller. The TG used in the force experiments used simple, joint interpolated motion

to move between the current position and a destination position specified by the ap-

plication code.

In addition to the movement mode, where joint interpolated setpoints are

generated, the TG also has three other modes; idle mode, PAC mode and DFS mode.

Idle mode is the default mode, in which the TG simply maintains the current position

of the robot arm. In order to switch the controller from one mode to another, it

is necessary to pass through idle mode; in this way, the robot is assured of being

motionless when the new motion mode is begun.

By requiring that the robot be motionless at the start of each motion n_od(_.,

the trajectory generation code can be made simpler. This is because the code to

perform one type of movement does not have to be able to handle transien{ ntotion

resulting from previous motion modes.

In DFS mode, the TG monitors the position of the robot arm, but d(,esr(I

generate setpoints for the joint controller. In PAC mode, the TG executes an algo-

rithm which implements the Position Accommodation force control. A descrit)lioJ)

of the theory and implementation of PAC is located in Chapter 3.

2.2.2.3 Interpolator

The interpolator resides between the trajectory generator and the controller.

This layer performs linear interpolation on the setpoints which the TG provide- for

the controller. This layer is necessary because of the fact that the TG typically runs

much slower than the joint controller. For example, the joint controller might run

every millisecond, while the TG may run every 20 milliseconds.

The interpolator obtains the sampling periods of the TG and joint controller

upon system startup. From this information, it determines the correct numb_:r of

interpolation points between the setpoints that the TG provides. For example, i_t

the above scenario, the joint controller would require 20 interpolation points between

the trajectory generator's setpoints, because the controller runs 20 times faster than

the TG.

Because the interpolation layer is self-contained, and is accessed only by the

joint controller and the trajectory generator, it is not noticed by the other modules

in the system. Because the interpolator is so transparent, it is often convenient in

discussions to ignore its presence altogether. However, in the implementation of a

robotic control system, the interpolator is an important module which can not be

ignored.

2_

2.2.2.4 Joint Controller

The function of the controller is to take setpoints from the interpolator and

apply a control torque to the robot joints, in order to servo the joints to the de-

sired positions. As the setpoints are changed, the controller calculates the torques

required to move the arm joints so that the joint positions track the setpoints.

It should be noted that the controllers calculate a torque for the motors of the

PUMA arm. Because of the gear train of the PUMA, the torque seen from the link

side of the gear train (hereafter referred to as "joint torque") is much higher than

the torque seen from the motor side ("motor torque"). This is due to the gear ratio.

The control torques which are calculated must take into account the gear ratios of

the PUMA joints.

The controller which was used has several different modes of operation. In each

mode, a different control equation is used to generate the motor torques. Messages

can be sent from the application layer in order to have the controller switch modes.

In order to keep the controller as simple as possible, the mode was switched only

when the arm was stationary; this prevented the need for having to deal with any

motion transients that might occur if the control mode was switched while the robot

was moving.

The control modes supported by the controller are:

• Proportional-Integral-Derivative (PID) mode: This mode was used for to ini-

tially position the arm prior to running experiments. Because of the integral

term, this mode exhibited the best positioning accuracy. The control equation

that was used was:

, = M(0)[tC,(O - O)+ t(, (On- O)d + - O)] +

In the above equation, _(0) is the estimated torque needed in order to com-

pensate for gravity. M(O) is an estimate of the mass matrix of the arm links.

"2"2

To simplify the calculations, 1_(0) is assumedto be diagonal, containing the

dominant configuration-dependentterms. The feedbackcontrol gainsand the

formula for the massmatrix which wereusedin the controller are contained

in Appendix C.

In actuality, the trajectory generatoronly calculated position setpoints (all

desired velocities were zero), so t}a = 0 in the above equation. Thus, the

controller really amounts to a PI controller with rate feedback [i7].

• Proportional-Derivative (PD) mode: This mode was activated whenever the

Position Accommodation Control was turned on. The control equation de-

scribing this mode is:

r = _(0)[ICp(Od - O) + I¢o(da - O)] + _(0)

As with the PID mode, t}d = 0. The feedback gains are listed in Appendix C.

Gravity Compensation Mode: In this mode, the joint positions were read,

and the torques needed to compensate for the forces on the arm links due to

gravity were calculated. Appendix A discusses the derivation of the gravity

compensation equations used in this mode. The control equation is:

, =

• DFS mode: In this mode, the forces on the end-effector are used in the calcu-

lation of the control torque. The basic control equation that was used is:

r = Jr F + [7(O)

F is a control signal which is a function of the desired and actual forces being

applied to the environment by the end-effector. This control mode is described

in detail in Chapter 4.

23

2.2.2.5 PUMA Channel Driver

The PUMA channel driver communicates directly with the Unimate controller

unit. It is one of the lowest level tasks in the system, and handles data I/O for

the controller. The main function of the channel driver is to supply the Unimate

controller with motor torques (calculated by the joint controllers) and to supply the

joint controllers (and other tasks) with the current position of the joints. In order to

communicate this information, the data is stored in shared memory locations which

are accessible by the channel driver and the tasks that require joint information.

2.2.2.6 FTS Channel Driver

The force/torque sensor channel driver performs a function similar to that of

the PUMA channel driver; it acts as the interface to the force sensor for all tasks

running on the cage. During normal operation, the channel driver reads the force

sensor periodically and copies the force sensor readings into a shared memory loca-

tion. This location can then be accessed by all tasks which require force information.

Due to the startup requirements of the force sensor [14], the sensor is connected

directly (via serial cable) to one processor on the VME cage. Because of this. the

channel driver is constrained to reside on the same processor. However, by copying

the force readings into shared memory, tasks which need the force information can

be distributed across the other processors.

It is worth noting that the LORD 15/50 force sensor is a 300 Hz force sensor.

Thus, the rate at which the channel driver can be run is limited by this value. This

sampling rate also limits the gains that can be used in any force control algorithm.

2.2.2.7 State Manager

The State Manager acts as a coordinator between all processes, informing them

of major changes in the state of the system. Upon booting the VME cage, the state

24

manager will help coordinate tasks which are started, and will provide them with

information (such as their sampling periods) that they need in order to properly

execute their respective functions. "

2.2.3 Further Description of Force Control Code

In the previous section, the major logical components of the force control

system were described. In this section, the pieces of code which comprise the logical

units are described.

The code that was written to conduct the force control experiments was split

across all five processors in the VME cage. All code executed concurrently, commu-

nicating via message passing, inter-processor blocks and shared memory locations.

Table 2.1 lists the pieces of code which were allocated to the various processors.

vx0 vxl vx2 vx4 vx5

(MVME 147) (MVME 135) (MVME 135) (MVME 147) (MVME 147)

mcsLib

chanLib

interpLib
chanFtsLib

dataLog

smLib

gripper interface

pacLib
transLib

spatLib

kinLib

dfsLib

dataVxWorks

application

mcsLib

chanLib

interpLib
chanFtsLib

dataLog

pumaLib

chanPuma

mcsLib

chanLib

interpLib
chanFtsLib

dataLog

transLib

spatLib
kinLib

pacLib

tgen

mcsLib

chanLib

interpLib

chanFtsLib

dataLog

ftsLib

chanFtsDrv

mcsLib

chanLib

interpLib

chanFtsLib

dataLog

transLib

spatLib

gravLib

jacLib

dfsLib

ctrlPuma

gripper Dry

Table 2.1: Distribution of Processes on VME Cage

Note that the listings in the upper part of the table are common to all proces-

sors; thus, this code is identical across all processors. These pieces of code provide

25

a commoninterface for all tasks beingexecutedon the processor.

chanLib - This code containsroutines for accessingthe sharedmemory locations

containing arm joint information (motor torquesandjoint positions).

chanFtsLib - This codecontainsroutinesfor readingand writing forceinformation

to shared memory locations. Only the FTS channeldriver writes forcesto

sharedmemory;all other tasksmay read forcesfrom sharedmemory.

dataLog - This code containsroutines for loggingdata on the VME cage. Tasks

which sampleand record data will call functionsin this pieceof code.

interpLib - This codecontains routines for workingwith the interpolation layer.

The trajectory generatorand joint controller call the functionslocated within

this library.

mcsLib - This codecontains routines which arecalledby taskson all processors

when the systemis booted. It containsa numberof functions for communi-

cating with the State Manager.

The listings in the lower part of Table2.1 arespecificto eachprocessor.Each

pieceof code will bedescribedbriefly here:

application - This is apart of the application layershownin Figure2.7. It provides

the userwith suchcommandsasstarting up and shutting down the CIRSSE

testbed, moving the arm to specificlocations,and readingthe arm position.

It also providesthe userwith commandsto switch into and out of both PAC

and DFS forcecontrol modes.

chanFtsDrv - This is the force/torque sensorchanneldriver.

chanPuma - This is the PUMA channeldriver.

2(;

ctrlPuma - This is the joint controller for the PUMA arm.

dataVxWorks - This is another componentof the application layer. It provides

the userwith commandsfor collecting("logging") data on the VME cage, and

uploading data to the Sun network.

dfsLib - Direct Force Servoing Library. This is a low-level library which provides

the joint controller with fimctions for calculating the force control signal (F)

for DFS control. It also provides file-reading functions which enable the ap-

plication layer to read in new force control parameters from data files.

ftsLib - Force/Torque Sensor Library. This is the lowest level driver code for the

force sensors in the lab. It provides the FTS channel driver (chanFtsDrv) with

a number of functions to control the force sensor hardware easily.

gravLib - Gravity Compensation Library. This library contains routines for calcu-

lating the PUMA motor torques required to hold the PUMA arm stationary

in the presence of gravity. The derivation of the equations used internally

by gravLib are described in Appendix A, while a complete description of this

code is given by [18].

gripper Dry - Gripper Driver. This is the lowest level code for the gripper

mounted on the PUMA arm. The driver receives commands (via message

passing) from the gripper interface code, and sends out the low level com-

mands necessary to operate the gripper.

gripper interface - This is the third major component of the application layer; it

is the user interface to the robot end-effector. It provides the user with simple

commands (such as "open" and "close") and communicates these commands

to the gripper driver (gripper Dry). Note that the gripper interface and the

gripper driver may be located on different processors.

27

jacLib - Jacobian Library. This library contains routinesfor calculating the Ja-

cobian, TransposeJacobian,and InverseJacobianof the PUMA arm. The

equationsusedby the codearediscussedin Appendix B. A complete-descrip-

tion of this codeis given by [19].

kinLib - Kinematics Library. This library contains routines which calculate the

forward and inverse kinematicsfor the PUMA arm and for the full 9 DOF

CIRSSE testbed arm. A detailed description of this code may be found in

[12].

paeLib - Position Accommodation Control Library. This is a low level library

which implements the force control algorithm describedin Chapter 3. The

trajectory generatorusesthe functions in this library to modify position set-

points according to the PAC algorithm. In addition, pacLib also contains

file-reading functions for the application layer to use.

pumaLib - PUMA Library. This isa low levellibrary whichcontainsbasicI/O rou-

tines for communicatingwith the Unimate controller hardware. The PUMA

channeldriver makesextensiveuseof theseroutines.

smLib - This is the State Manager,whichwasdescribedin the previoussection.

spatLib - Spatial Vector Library. This is a math library of functionswhichoperate

on vectorscontaining 6 elements. Suchvectorsare usedin pacLib, jacLib,

etc. to calculatevaluesfor eachof the 6 degreesof freedomof the robot.

tgen - This is the trajectory generator.

transLib - Transform Library. This math library providesthe userwith a rich set

of functions which operateon homogeneoustransforms.

CHAPTER 3

Theory and Implementation of Position Accommodation Force Control

In this chapter, the Position AccommodationControl algorithm is described. The

basictheory behind it is given first. Next, severalimplementationdetails are pro-

vided in orderto clarify the conceptspresentedin the first section. Finally, a number

of issuespertaining to this algorithm arediscussed.

3.1 Theory

3.1.1 Description

Position Accommodation Control is a force control algorithm in which the

forces felt at the end-effector are accommodatedby altering the position of the

end-effector accordingto the mass-spring-damper(MSD) equation shownbelow.

Figure 3.1: Model of Mass-Spring-DamperSystem

MdS3Cd + BdZ2d + Kd(EXd -- EX,.ef) = S(Efd -- Ef) (3.1)

In the above equation, fa is the desired force applied to the environment, f

is the measured force applied to the environment, and x,_f is the reference position

for the mass-spring-damper system. All are expressed in the end-effector frame.

Md, B_, and Kd are the mass, damping and spring terms, respectively; they are

2S

29

6 × 6 matrices, usually consideredto be diagonal. The remaining terms, with the

exceptionof S, are 6 × 1 vectors.

S is a 6 × 6 matrix with a special form. The off-diagonal elements of this matrix

are zero, while the diagonal elements are either zero or one. By making a diagonal

element equal to one, Position Accommodation is enabled along the corresponding

Cartesian axis. If the diagonal element is set to zero, the PAC algorithm will not

comply along the corresponding axis, because it will not "see" the force information

for that axis. By using this matrix, the user can select the Cartesian directions

in which the robot will comply to forces. For this reason, S is commonly called a

"selection matrix".

The selection matrix acts like a switch, enabling or disabling compliance along

certain Cartesian axes. Otherwise, it does not affect the behaviour of equation (3.1),

and therefore, it is fairly transparent to the operation of the PAC algorithm. For

this reason, the presence of the selection matrix in the MSD equation will sometimes

be ignored in the following discussion.

By making the matrices diagonal, 6 decoupled linear equations are produced,

one for each Cartesian degree of freedom of the end-effector. Thus, the motion of

the end-effector in each degree of freedom can be made to behave like a different

mass-spring-damper system. This is a useful ability; in some instances, for example,

it may be desirable to comply easily in the tool Z direction, but very little along

the X or Y axes.

3.1.2 PAC Is an Integral Force Control Algorithm

When the spring term is set to zero, Position Accommodation Control in an

integral force control algorithm [20]. This can be shown fairly easily for the case

when the robot is contacting a rigid surface. The general dynamic equation for the

robot in contact with a rigid surface is:

3O

M(O)O + C(O,b)O + g(O) + j:r f = T (3.2)

where M(O) is the inertia matrix, C(O, O) contains the Coriolis and centrifugal terms,

and 9(0) is the load due to gravity, r is the vector of torques which are applied to

the joints via the motors and gear train of the robot, f is the vector of forces which

are applied to the environment by the end-effector of the robot.

Consider a position-based joint controller that uses a proportional control law

with rate feedback, along with gravity compensation. The equation for this type of

controller is:

T= IG(Od- O)- I,'ob+

Setting equations (3.2) and (3.3) equal to each other results in:

(3.3)

MO + Cb + g(O) + jr f = Igp(Od - O) - I(,b + [_(O)

Because the surface is rigid, it will not comply to a force. Since the robot is in

contact with the surface, the joint positions will not change much (i.e. joint motion

is negligible). Thus, t} and t_ are approximately zero, and the Jacobian, which is a

function of 0, will be approximately constant.

Using this information, and assuming that _(0) = 9(0) (i.e. the gravity com-

pensation works well), this equation can be simplified.

jT f _ Kp(O4 - O) (3.4)

The term J:rfd will be added and subtracted from the left side of equation (3.4). In

addition, the right side will be expanded. This results in:

jT f _ jT fd + jr fd = KpOd -- 1,2pO (3.5)

3_

By making the substitution f,,T = fa - f, and rearranging terms, the following is

obtained:

I(vOd = -JT ferr + JT fd + KvO (3.6)

Because 0 is constant, the rightmost two terms in equation (3.6) can be combined,

forming a single constant, v. This results in:

KpOd -- --JT f_rr + v (3.7)

At this point, the MSD equation is introduced. Setting Kd = 0 in equation (3.1),

the following equation is obtained:

/Pld_d + Ba_d = L,, (3.8)

Applying the substitutions 5: = J0 and 5: _ J0 to equation (3.8), produces the

following equation:

ll/I,_JSd + BdJOd = f,_ (3.9)

Multiplying each term in equation (3.9) by _jv, substituting in equation (3.7),

results in the following:

- jTM,_JOd - jTBdJO,_ -'- I(pOd - v

Rearranging terms produces the following result:

(3.1o)

JTMdJOd + JTBdJOd + KpOa = v (3.11)

Equation (3.11) is a second order differential equation in 0a. Provided that

the parameters Md and Bd are chosen properly, 0_ will converge to some constant

°

32

value. After convergence, 0d = 0d = 0, and from equation (3.9), f_T also goes to

zero. That is, f converges to fd at the same rate that 04 converges to a constant.

Note that it is possible that 0d will have oscillatory behaviour as it c6nverges

to a constant value. This is possible due to the fact that equation (3.11) is a

second order equation. Even if a set of gains is found which allows the desired joint

positions to converge without oscillation, the convergence behaviour may change

when the robot is put into another configuration. This is because J and jT are

functions of the joint angles, and will change when the robot joints are moved.

By setting Md to zero, the order of the above equation is reduced:

JrBaJOa + l(pOd = v (3.12)

The desired joint angles will converge exponentially, as long as the 6 poles (1 for

each desired joint position) are not complex. This is not a difficult constraint to

achieve, and it is certainly easier to accomplish than ensuring that the 12 poles

resulting from equation (3.11) are not complex. While equation (3.12) is also con-

figuration dependent (due to the Jacobian terms), changing configuration will tend

to change the rate of convergence of the desired position (and the force), rather than

introducing oscillation.

By setting Md to zero, we still have an integral force controller. The control

law can be derived in a straightforward manner, beginning with the compliance

equation:

Bd:cd = f_

Substituting Jt)d for kd, and rearranging terms, produces:

(3.13)

bd = J-1B21f_,_

By integrating both sides, the following equation results:

(3.14)

:_3

tOd(t) --Od(O) = J-IBdlferr(s)ds (3.15)

Since the joint positions are constant, 0d(0) = 0(0) _ O(t). In addition, because the

Jacobian is constant, it will be moved out from under the integral sign:

f0 tOd(t)-t_(t) = J-_B_ 1 fer_(s)d.s

Substituting equation (3.15) into equation (3.3) produces the final result:

(3.16)

f0 tv = KpJ-1Bd I f_r(s)ds - 1(_/_ h- _(0) (3.17)

Note that equation (3.17) describes the torques applied to the joints by tile

motors. This equation shows that the PAC algorithm is an integral force controller.

In addition to having an integral force term. the control law also contains gravity

compensation and damping terms.

3.2 Implementation

3.2.1 Description of Basic Algorithm

This section discusses the components of the robot control system which are

involved in the execution of the PAC algorithm. Further discussion of the algorithm

is also provided in order to clarify the concepts presented in the previous section.

Figure 3.2 shows the major components of the robot control system (presented

in Chapter 2) which are involved in the execution of the Position Accommodation

algorithm. The major paths of the data flow are also shown.

During normal operation of these components, regardless of whether the PAC

algorithm is being executed, the lowest level support code operates in the following

manner. The FTS channel driver reads the force sensor, and places the force me_t-

surements into shared memory, available for all tasks to read. The PUMA channel

34

TrajectoryGenerator

0
Interpolation Layer I I f

_ _[j PUMA Controller] [

0 x

-PUMA Channel Driver

Encoder I Motor
. _LC_o.unt.s_............ ___C,urrents
i I

' PUMA '
I I

I

0 = joint angles

0a = desired joint angles

z = joint torques
f = forces

:: ::.:_.._ _...x_

f

FTS Channel Driver I

/_ Strain Gauge
............ j..tAr_o_ag.o.n_.,
I I
I

, Force Sensor ',
I

I

Figure 3.2: Block Diagram of Components Used in PAC Force Control

driver reads the joint positions of the robot and places this data into shared memory

as well.

When the system first begins execution of the PAC algorithm, the trajectory

generator reads the joint positions and uses the forward kinematics to determine the

0Tposition of the end-effector in Cartesian space (E). This is used as the reference

position in all subsequent sampling periods. Recall that Position Accommodation

Control requires a reference position (see equation (3.1)) to determine where to move

the end-effector.

Every sampling period thereafter, the following operations are performed by

the trajectory generator while executing the PAC algorithm:

• The force measurements are read from shared memory.

• The forces are used to calculate a desired setpoint using a mass-spring-damper

equation. A homogeneous transform is then generated which describes the

35

desired end-effector position and orientation with respect to its reference lo-

cation; that is: EEfT-

• The desired position and orientation of the end-effector with respect to the

world fi'ame of the robot is calculated by using the equation:

B01T._ 0 EET _,T

• New joint angles which will place the end-effector in the desired position

are generated using the inverse kinematics for the robot. The desired joint

setpoints are then sent to the joint controller (via the interpolation layer).

The joint controller obtains the setpoints from the interpolation layer, and

uses its control law to generate motor torques for each of the robot joints. These

torques are placed into shared memory for the PUMA channel driver to read and

output to the robot hardware.

3.2.2 Second Order Equations

Equation (3.1) expresses the continuous-time equation that describes the PAC

algorithm. Since the force controller is implemented on a digital computer, the

continuous-time equation must be converted into a discrete-time form. At each

time interval, t = nk, n >_ O, the discrete-time equation should behave like its

continuous-time counterpart:

MdEYcd(nk)+ Bd_d(nk)+ I(d(_zd(nk)-- Exrel)= S(Efd- _f(nk)) (3.18)

In order to simplify the equation, the following substitution will be made for

the right-hand side of the equation:

_f_r.[k] = _ f_- _ f[k] (3.19)

36

To convert the MSD equationinto a form which canbeeasily implementedin

the trajectory generator,the following simple-differenceapproximationsfor velocity

and accelerationwill be used:

whereTs is the sampling period.

In addition, xr_f will be set to zero.

x_[k]- xd[k- 11
rs

_?d[k]- _:a[k- 11

T_

(3.20)

This simplifies the equations, but does

not limit the control algorithm. The output of the equations presented here is the

location of the mass-spring-damper system with respect to its reference position (in

this case, zero). This location is then mapped into the location of the end-effector

with respect to the end-effector's reference position (Z,T).

Substituting these equations into equation (3.18), the following equation is

obtained:

M (%_[k]- 2%_[k - 11+ Exd[k-- 21)S Eferr [_] + (3.21)
T}

B(%d[k]- %_[k- 11) KdExd[k]+
T,

Rearranging terms, the final MSD equation is obtained:

%_[kl = T'_ S _L,r[k]
Md + BdT,+ I(dT]

(2Me+ BdZ) %d[k- 11- M,
+ Ma + BdT, + KaT} Ma + BdT, + KaT_ 2

Equation (3.22) is the second order equation which is implemented in the Position

Accommodation Control library, described in Chapter 2.

?,7

3.2.3 First Order Equations

In the case where Md = 0, a first order system results. The continuous-time

equation which describes this system is as follows:

Bd_2d(t) + Kd(EXd(t) - EXr_I) = S(Efd - s f(t)) (3.23)

As before, this equation must be converted into a discrete-time form. The

same substitutions will be used for the right-hand side of the equation, and for

approximating velocity (equations (3.19) and (3.20)). Substituting these equations

into equation (3.23), setting xr_l to zero, and converting to discrete-time notation

results in:

B(_X_[k]- _x_[k- 1])
T_ + z,'_%_[k]= s _L_r[k] (3.24)

By rearranging terms, the first order discrete-time equation is obtained. This

equation is also implemented in the PAC library.

z[k]- T_ S _L_[k]+ B_ _x_[k- _] (3.25)
Bd + KdT_ Bd + IidT_

3.2.4 Translating Forces From the Sensor Frame to The Tool Frame

An important issue which must be handled during the implementation of this

algorithm concerns the frame in which the forces are measured and expressed. The

forces are measured in the sensor frame, while the robot is moved with respect to the

end-effector frame. These frames do not coincide, and may actually be separated

by some distance. In order to eliminate this frame problem, it is necessary to

"translate" the forces from the sensor frame to the tool frame.

Figure 3.3 depicts two frames connected by a rigid link. Let F denote the

force sensor frame, let E denote the end-effector frame, and let the rigid link be

the end-effector itself. Suppose there are forces and torques applied to the link

:38

Frame 'F'

p

.- F F

f,'r F

Frame 'E'

Figure 3.3: Two Frames Connected By a Rigid Link

about frame F, which are measured by the force sensor. These measurements are

expressed in the coordinates of frame F. It is desired to find the forces and torques

felt at frame E, expressed in frame E.

The forces felt at frame E, but expressed in frame F, can be determined as

follows:

=

rr_ = Frp + r fr x rpr, E

(:3.26)

Note that f and r are each 3 x 1 vectors. The torque equation can be rearranged

as follows:

fr_ = rTr-- rpr, E X Eft

rrr + t,p_,p x r fr

F_

= rre+ pE,rrfF (3.27)

In matrix form, the equations for the force and torque become:

rr_ P_,r I rr_-

(3.28)

39

To expressthe forcesand torquesin frameE, each term is multiplied by the rotation

E .matrix _.R.

By combining equations (3.28) and (3.29), we have the means for translating the

forces and torques in the sensor frame to the end-effector frame:

FR 0 I 0 _fr

ET 0 E F_F R P_,F I Fr_
(3.30)

In order to translate the forces from the force sensor frame to the end-effector

frame, it is necessary to have the homogeneous transform describing the position

and orientation of one frame in terms of the other. With this information, it is

straightforward to modify the forces read by the force sensor before executing the

mass-spring-damper equations.

3.2.5 Forward Differencing Versus Backward Differencing

The derivation of the first-order and second-order discrete-time compliance

equations involved the use of backward differencing in order to approximate the

velocity and acceleration terms (equation (3.20)). Another possible approach to

calculating the compliance equations would be to use a forward differencing approx-

imation, such as:

xd[k+ 11- xd[k]
T,

T,

(3.31)

Compare these approximations to equation (3.20). In this section, it will be shown

that using forward differencing results in a system which is not as robust with

40

respect to parameter variations as the backward differencingresult. To illustrate

the difficulties with the forward differencing derivation, the first order equation

will be rederived. The first order continuous-time equation (ignoring the selection

matrix) is:

BdZicd(t) + It'd(Exd(t) - _X_/) = _ fd - _ f(t) (3.32)

Setting xr_/to zero, converting to discrete-time notation, and substituting equations

(3.19) and (3.31) into equation (3.32) results in:

Bd(_xd[k + 1]- _xd[k])+ Kd%d[k] = _f_r[k] (3.33)
Ts

Rearranging the terms in the equation results in:

__ KdTs - Bd EBd Exd[k+ 1] + xa[k] = _fe_[kl (3.34)
Ts T_

Subtracting one from each of the time indices, and rearranging the terms produces:

Ts E Bd - K4T_ _Xd[k- 1] (3.35)
xd[k]= _ f_r_[k- l] + B_

Equations (3.35) and (3.25) are clearly different. To determine which is better,

the transfer functions for both equations must be determined. Converting equation

(3.35) into the Z-domain produces:

%,d(z) = T. _, %.(z) +
Bd z

Bd -- K,iT, z_, _:xd(z) (3.36)
Bd

Rearranging terms results in the transfer function:

F'Xd(Z) _ T_z -_ = T_ (3.37)
L.(z) Bd + (Bd - 1(dT,) z- Bd z + (Bd - KdTs)

The transfer function for the forward differencing solution has a pole at:

,II

-
z--

Bd

When the pole is inside the unit circle, the simulated spring-damper system

will be stable. It is necessary to determine the relative values of the spring and

damping terms which will ensure stability. For the system to be stable, Izl _< 1.

That is:

-l<z<l

Substituting in the pole location yields:

KaT, - Bd
-1< _<1

- Ba

Rearranging terms results in the following inequality:

2Ba

0 <_ Kd <_ _ (3.38)

The firstpart of the inequalityindicatesthat Kd must be nonnegative for

stability.This holds true for continuous-time systems as well, but for physical

springs K is always positive. The second part indicatesan additional constraint

that Kd can not exceed a threshold which isa function of the damping parameter

and the sampling period. This isnot paralleledin a physicalsystem; a realmass-

spring-damper system is a passive system and is never unstable. At worst, itis

marginally stable (when there is no damping).

To provide a comparison, the same analysis will be performed on the first order

equation produced using backward differencing (equation (3.25)). This equation is

repeated below:

E T,
xd[k] - Bd + K T8

Bd Exd[k- 11 (3.39)
f,.,.[k] + Ba + KaT8

42

Converting to the Z-domain results in:

xd(z) = B,_ + KdT_ B_ + KdT_

Rearranging terms results in the transfer function:

EZd() T, z

(Bu + KdT_) - Bd z -_ (B_ + K_T,) z - Bd
(3.41)

The transfer function for the backward differencing solution has a zero at the origin,

and a pole at:

Bd
z-

B_ + IQT_

As before, in order for this system to be stable, Izl < 1. For this system, there are no

positive values of BH and Kd which will cause it to go unstable. It is straightforward

to show this, starting again with the criteria for stability.

Substituting in the pole location produces:

Bd
-1< <1

- Bd + KdTs -

Rearranging terms results in the following inequality:

-2B_

T,
I(d < 0 < Ks (3.42)

Thus, Ka > 0 for stability. The first part of the of the inequality can be rewritten

as:

2Ba
_+Kd>0
T.

which can be rearranged to produce:

-K_T_

Bd >_ _ (3.43)

43

Since It'd and T, are nonnegative, the second requirement indicates that the

damping parameter must be chosen greater than some negative value (which is a

function of the spring term and sampling period). Because the damping., term is

normally chosen positive, this is not a restriction. Thus, if Bu > 0, Ka _> 0, the

system will be stable. This result agrees well with a physical mass-spring-damper

system.

From this comparison of the two transfer functions, it is evident that backward

differencing is a better strategy to use. The system equation that is produced by

backward differencing more closely resembles a physical, continuous-time system,

and is more robust with respect to varying the parameters.

3.3 Discussion

There are a number of other issues which must be considered when implement-

ing the Position Accommodation algorithm. Several of these issues are discussed in

this section.

3.3.1 Force Sensor

The PAC equations which describe the motion of the end-effector use the

symbol f as the measured force which is applied to the environment. It is important

to realize that the force sensor actually measures forces applied to the sensor itself,

not to the environment. It is necessary, therefore, to negate the force measurement

from the sensor at some point in the coded algorithm.

It should also be noted that in any type of force control, the robot will only

react to forces which it can perceive. Forces applied to the links of the arm below

the location of the force sensor will not be noticed by the PAC algorithm (although

the joint controllers will act to reject the disturbance force and maintain the joint

positions). Forces applied to the force sensor or gripper will be picked up by the

44

force sensorand acted upon by the trajectory generatoraccording to tile mass-

spring-damper equations.

Lastly, it shouldbe kept in mind that the forcesensoris a physicaldevice,and

will havenoise. Thus, the force measurementsobtained by the sensorwill fluctuate

slightly about the actual forcevalue. Considerwhat wouldhappenif the parameters

Ka and f,t are set to zero in the PAC algorithm. From Section 3.1.2, we know that

in such a situation, the PAC algorithm is an integral force controller. If the robot

is not contacting a surface, in theory the forces measured by the sensor are zero,

and the end-effector will maintain its position indefinitely. In practice however, the

end-effector will begin to drift slowly in the directions which have no spring value.

This is because of the small fluctuations in the force measurements; these non-zero

force readings have been mapped into end-effector motions by the PAC algorithm.

3.3.2 Singularities

Robots typically have a number of singular points (or singularities), whose

location is dependent upon the geometry of the robot arm. These singular points

are places in the robot joint space where the robot loses a degree of freedom. At a

singular point, the robot loses the ability to move in a certain direction. Consider,

for example, joint 5 of the PUMA. When this joint is at 0 degrees, the axes of

joints 4 and 6 coincide, causing the robot to lose a degree of freedom. Because of

the alignment of these joints, the gripper can not rotate about the Cartesian axis

perpendicular to both joints 4 and 5.

The PAC algorithm has difficulty with robot singularities. The problem lies

in its use of inverse kinematics to map the desired Cartesian position of the end-

effector to the desired positions of the robot joints. If the robot is too close to a

singular position, small Cartesian motion will result in large movement of some of

the robot joints.

_5

Equation (3.17) provides another insight into the problem that the PAC al-

gorithm has with singularities. Note that the integral force term is scaled by tile

inverse Jacobian. At singularities, the Jacobian loses rank, while the inverse Jaco-

bian blows up. Near the singular points of the robot, the torques applied to tile

joints will become very large, resulting in large joint motion.

In order to handle the problem of motion near singularities while executing

the PAC algorithm, several options are available. These include:

• Avoid singularities - This requires the identification of the singularities for the

robot being used, or some path planning algorithm which will inherently avoid

singularities. While the singularities for the PUMA are well known [19, 21, 22],

it may be difficult to determine the singular points for less common robot

types.

Limit the maximum joint velocities - this will prevent the joints from moving

faster than some acceptable limit, at the expense of causing the gripper to

deviate from the desired trajectory corresponding to the MSD motion.

3.3.3 PAC Architecture

Because the PAC algorithm is implemented in the trajectory generator, it is

isolated somewhat from the dynamics of the robot itself. The joint controller is

left with the responsibility of handling the low level motion of the robot. This

structure has important ramifications. One benefit is that different joint controllers

can be used to control the joints. For example, instead of using a PD controller

(as was done for this research), a PI, PID, or sliding mode controller might also be

used. A related result is that the PAC force control algorithm can be implemented

relatively easily on industrial robots. Such robotic systems often have position-

based joint controllers, and allow users to program trajectory generators to provide

the controller with setpoints.

46

Another point whichshouldbekept in mind is that the forcecontrol algorithnl

is run with the sampling period of the trajectory generator. Typically, this might

be in the rangeof 20-40 milliseconds,and is muchslower than the controller servo

rate. This samplingrate will limit the rangeof mass,springand damperparameters

which can be simulatedby the robot system,and therefore will limit the response

time of the system.

In the previousdiscussionof the PACalgorithm, fd was considered a constant.

However, it might also be implemented as a function of time. This would result in

a controller which could track a force "trajectory", instead of just servoing to a

constant force value.

In the discussion of the implementation, the reference point of the PAC algo-

rithm was considered to be the position of the end-effector when the algorithm was

started. As an alternative, a "moving" reference point might be used. The trajec-

tory generator's regular function is to take knotpoints from the application layer,

and generate setpoints every sampling period. If these setpoints are used as the

reference points, the robot can follow a desired trajectory until the gripper contacts

an object or surface. The gripper would then comply to the forces according to the

MSD equations.

3.3.4 Effect of Spring Term In PAC Algorithm

In Section 3.1.2, it was shown that when Kd was eliminated, the PAC algorithm

became an integral force controller. Setting Kd = 0 was necessary for this to occur.

This is because the spring force serves to oppose the force error, which is the input

to the mass-spring-damper equation. The spring parameter serves to limit the

distance that the mass will move away from its reference position.

If the spring parameter is non-zero, the actual force in steady state will not

equal the desired force. To see this, consider the scenario where there is a spring

° '

47

force. (The selection matrix will be ignored for this discussion.) The equation

governing the overall motion of the end-effector is:

Ma _xd + B_Eica(t) + Ka(_xd(t) - zx_,f) = _ fd - Ef(t) (3.44)

Assuming the parameters are chosen to allow the robot to stably contact the environ-

meat, the system will achieve a steady state force value. At this point, _a = _d = 0,

and the following equation results:

_ f(t) = Ef a _ Kd(Exd(t) _ _x_f) (3.4.5)

Thus, the steady state force is not equal to the desired force; there is a differ-

ence which is proportional to the distance that the gripper has moved away from

its starting point.

As the spring constant for a given axis is increased, the distance that the

gripper will deflect for a given force will decrease. If It'a is increased to infinity, the

gripper will not alter its position at all in response to a force. This is equivalent to

not allowing compliance in that degree of freedom.

3.4 Summary

In this section, the theory and implementation of Position Accommodation

Control has been discussed. The basic concept of the algorithm was presented first,

and it was shown that the algorithm is an integral force controller. A description of

the basic tasks which must be accomplished during execution of the PAC algorithm

was presented, and the discrete-time equations which are implemented in the al-

gorithm were provided. Finally, a number of important issues concerning the PAC

algorithm were discussed.

o "

CHAPTER 4

Theory and Implementation of Direct Force Servoing ..

In this chapter, the Direct Force Servoing algorithm is described. The basic theory

behind it is presented first. Next, some implementation details are provided in

order to clarify the concepts presented in the initial section. Finally, several issues

pertaining to this force control algorithm are discussed.

4.1 Theory

4.1.1 Description

Direct Force Servoing is a force control algorithm in which the forces exerted by

the end-effector on the environment are controlled by directly controlling the torques

applied to the joints of the robot. In contrast to the Position Accommodation

algorithm, no position setpoints are generated. In order to relate the end-elTector

forces to the joint torques, the transpose of the Jacobian is used. It has been shown

that the transpose of the Jacobian, jT, relates the forces felt at the end-effector to

the torques felt at the joints of the robot [13].

The control equation for the DFS algorithm is:

r = JTF + _(0) (4.1)

where _(0) is the gravity compensation torque. The control signal, F, is defined as:

_0 tF = Kp(fd - f(t)) + K, (fd -- f(a))ds + KI, A (4.2)

In the above equation, fd is the desired force to be applied to the environment,

and f is the measured force applied to the environment. Both are 6 x 1 vectors. The

48
o

49

terms Kp, Kz, and Kid are 6 x 6 diagonal matrices which contain the control gains.

By making the matrices diagonal, 6 decoupled control equations are produced.

It is also useful to incorporate a selection matrix, S, in this control algorithm.

It functions in the same manner as the selection matrix in the PAC algorithm.

Equation (4.2) then becomes:

fotF= S(Kp(fd-- f(t)) + K, (fd-- f(s))ds + KjJd) (4.3)

The selection matrix allows the algorithm to control forces only along certain

Cartesian directions, ignoring the directions which are not enabled. Because tile

selection matrix is transparent to the behaviour of the controller in the directions

which are enabled, much of the following discussion will ignore the presence of the

matrix.

4.1.2 DFS Does Not Produce Straight-Line Cartesian Motion

Unlike Position Accommodation Control, the DFS algorithm presented here

does not move the gripper in straight lines in Cartesian space. This is a limitation

of the algorithm presented here; however, for small motions (less than a centimeter)

this control method provides a reasonable approximation to straight-line Cartesian

motion.

To show this feature of the Direct Force Servoing algorithm, we start with the

general dynamic equation for a robot in contact with a rigid environment (equa-

tion (3.2)), repeated below:

M(O)8 + C(0,0)0 + g(O) + jT f = T (4.4)

Assuming the motions of the robot are slow, the Coriolis term is negligible, and can

be ignored. By substituting the DFS control law, equation (4.1), into equation (4.4),

5O

and canceling the gravity terms, the following equation is obtained:

MO + jT f = jT F (4.,5)

Rearranging the terms, and applying the approximation 53_ Jtg, produces:

l],i,]-l._2 _ jT(]7_ f) (4.6)

The final result is obtained by rearranging terms:

= JM-_jT(F - f) (4.7)

The matrix formed by JM-1J T is typically nondiagonal; therefore, force terms

along one Cartesian axis will produce accelerations in other Cartesian directions. To

see this more clearly, consider the following scenario.

Let us assume that the only forces which are desired or are actually being

applied are in the tool Z direction. Thus, F = 0 0 F: 0 0 0 , and f =

0 0 fz 0 0 0 (This could be achieved using the selection matrix described

earlier.) If the controller produces straight-line Cartesian motion, the only end-

effector motion would be in the tool Z direction. However, J, jr, and M -1 are

all nondiagonal matrices. Thus, there will be accelerations in Cartesian directions

other than the tool Z direction. Therefore, the DFS algorithm does not move the

gripper in straight-line paths in Cartesian space.

4.1.3 Direct Proportional Force Control Is Not Robust With Respect

To Time Delay

Another characteristic of the Direct Force Control algorithm which has been

noted in [7] is that direct proportional force control tends to be unstable with respect

to time delay. To show this result, consider again the general dynamic equation for

a robot:

M(O)O + C(O,O)O + g(O) + jT f = r (4.8)

51

Assumingthat the joint motions are slow, wemake the approximation that

_J= tJ--0. Substituting the DFS control law, equation (4.1), into equation (4.8),

and canceling the gravity terms, we obtain: ..

jT f = jT F (4.9)

Thus, we have that f = F. That is, the force on the environment is equal to

(in theory) the force control signal, F.

Now consider the discrete--time control law:

r[k] = jTF[k- 11 (4.10)

where the F signal is generated using a purely proportional force equation:

F[k] = Kp(fa - f[k]) (4.11)

Note the single delay in equation (4.10). This is representative of the fact that

control calculations take a finite amount of time. Because of the needed calculation

time, discrete-time controllers commonly calculate the control torque during one

sampling period, and output it during the nezt sampling period.

Combining equation (4.10) with the discrete-time version of the relation be-

tween end-effector forces and joint torques: r[k] = JTf[k], the following relationship

is obtained:

f[k I = F[k- 1] (4.12)

Substituting equation (4.11) in the above relationship results in:

f[k] = Ke(f,_ - f[k- 1]) (4.13)

Rearranging terms produces the following equation:

f[kl + K,,f[k- II= (4.14)

° "

52

Converting the equation into the z-domain results in the following:

f(z)(l + l(pz -1) = Kpfd(z) (4.15)

Recall that Kp is a diagonal matrix, so the above matrix equation contains 6 de-

coupled equations. The transfer function of any of the component systems is:

fi(z) Kp, _ Ire, z

fd,(z) 1 + K,,,z -1 z + Kp,'
1 <i<6 (4.16)

Note that in order for each system to be stable, [/¢P,I < 1.0, for 1 < i _ 6.

While this limit assumes that the surface is rigid (recall that we started with an

equation which assumed the robot was in contact with a rigid surface), it nevertheless

points out that direct proportional force control may not be robust due to the time

delay inherent in a physical system.

4.2 Implementation

4.2.1 Description Of Basic Algorithm

This section discusses the components of the robot control system which are

involved in the execution of the DFS algorithm. Further discussion of the algorithm

is provided in order to clarify the concepts presented in the previous section.

Figure 4.1 shows the major components of the robot control system which are

involved during the execution of the Direct Force Servoing algorithm.

The lowest level support code is in continual operation, regardless of whether

the DFS algorithm is running. The FTS channel driver obtains the forces from

the force sensor and places the measurements into shared memory. Similarly, the

PUMA channel driver reads the joint positions of the robot and stores the values in

shared memory.

During execution of the Direct Force algorithm, the controller must perform

the following operations every sampling period.

5:3

0

Trajectory Generator I

Interpolation Layer

0 = joint angles

"t: = joint torques

f = forces

m

J

m
J

PUMA Controller
f

e x

PUMA Channel Driver

¢ Encoder .[Motor

r- L .C.o.u.9._ts_............ _. Currents

: PUMA ,
I I

FTS Channel Driver

¢ S_ain Gauge

............ j_ .by__o_rtn__ to_n_-,
I
I |

, Force Sensor '
!

I
I /

Figure 4.1: Block Diagram of DFS Force Control

• The force and position measurements are read from shared memory.

• The gravity compensation torques are calculated based on the position of the

robot joints.

9• The force control signal (F) is calculated based upon equation (4..).

• The joint torques are calculated from F using the transpose Jacobian.

• The gravity compensation torques are added into the joint torques and the

values are stored in shared memory.

The PUMA channel driver will read the joint torques from shared memory during

the next time sample, and output them to the robot hardware.

It should be noted that the trajectory generator does not actually participate

in the control loop. However, when the system first begins execution of the DFS

algorithm, the trajectory generator must be notified. This is because the trajec-

tory generator normally provides the controller with position setpoints. The joint

54

controller does not need these setpoints while it is executing the DFS algorithm.

It is especially important to notify the trajectory generator when the system is

to leave the Direct Force control mode. Upon leaving this mode, the joint controller

will again require position setpoints. The trajectory generator must determine the

new position of the robot upon leaving the force control mode, so that the setpoints

it gives to the joint controller do not cause a sudden change in the position of the

robot.

4.2.2 Discrete-Time Equations

Equations (4.1)and (4.2) comprise the continuous-time version of the DFS

control law. The discrete-time equations (with the selection matrix) are shown

below.

r[k] = jTF[k- 1] + _(6)

where the control signal, F, is defined as:

(4.17)

k

F[k] = S (Kp(fd -- f[k]) + K, _ (fd -- f[i]) + K/dfd) (4.18)
i=0

These equations are implemented in the Direct Force Servoing library, described in

Chapter 2.

4.3 Discussion

There are a number of issues which should be considered when implementing

the Direct Force Servoing algorithm. Several of these issues are discussed in this

section.

55

4.3.1 Force Sensor

In Chapter 3, several points about the force sensor were mentioned, in the

context of Position Accommodation Control. These issues pertain to th_ Direct

Force Servoing algorithm as well. For example, as with the PAC algorithm, it is

necessary to translate the forces from the force sensor frame to the end-effector frame

for direct force control. The other topics (negating the force sensor measurements,

what forces the sensor can perceive, and sensor noise) are equally applicable to the

DFS algorithm.

4.3.2 Singularities

In contrast to the behaviour of the PAC algorithm, the DFS algorithm should

not have difficulty with robot singularities. This is because the control law uses the

transpose Jacobian to relate the joint torques to the forces at the end-effector. The

transpose Jacobian does not exhibit the same problems as the inverse kinematics

when the PUMA arm goes into a singular position. At a singular point, the arm

loses a degree of freedom, and may not be able to achieve the desired force in some

direction. However, no large motion of the joints should occur.

4.3.3 DFS Architecture

The DFS algorithm is implemented in the joint controller for the robot. Thus,

unlike the PAC algorithm, it is not isolated from the dynamics of the robot. The

location of the algorithm prevents easy implementation of this algorithm in indus-

trial robotic systems, because the joint controller itself must be specialized enough

to handle forces. However, because of its location, the DFS algorithm runs at the

controller servo rate. In a typical robotic system, the controller may run about an

order of magnitude faster than the trajectory generator. Because of this faster sam-

pling rate, it is reasonable to expect that a Direct Force controller would be more

56

responsivethan a Position Accommodation controller.

It should also be noted that in the earlier discussion of the Direct Force al-

gorithm, fd was considered to be a constant. As an alternative, fd could b.e imple-

mented as a function of time. This would result in a controller which could track a

force "trajectory".

4.3.4 Gravity Compensation

The term "gravity compensation" refers to a process by which the gravitational

forces applied to the robot links are canceled. This is accomplished by reading the

robot joint positions every sampling period, calculating the torques which are being

applied to the joints by gravity, and then applying an opposing motor torque to

counteract the effect of gravity. If the gravity compensation is done properly, the

arm will remain motionless when the brakes holding the joints are released.

It is interesting to note that if the control gains Kp, Kt, and K/_ in equation

(4.2) are all zero, then F is zero as well. In this case, the DFS algorithm reduces

to pure gravity compensation control. Thus, gravity compensation control can be

thought of as a "special case" of the Direct Force Servoing algorithm presented here.

4.4 Summary

In this chapter, the theory and implementation of Direct Force Servoing has

been discussed. The basic algorithm was presented first, and it was shown that the

DFS controller is not a Cartesian controller. In addition, it was shown that direct

proportional force control should not be robust with respect to time delay. Next, a

discussion of the basic tasks which must be accomplished by the controller during

execution of the DFS algorithm was presented, and the discrete-time equations

which were implemented were provided. Lastly, a number of issues pertaining to

the DFS algorithm were discussed.

CHAPTER 5

Results of Force Control Experiments With Flexible Surfaces

5.1 Motivation

In order to perform useful work, a robot must come into contact with its envi-

ronment. In order to contact the the environment safely, some means of controlling

the forces exerted upon the environment must be used. This is the motivation for

force control; to allow the robot to safely come in contact with the environment.

The robot environment may contain a variety of different materials. Because

each material will have its own flexibility, the robot force control algorithm must be

able to deal with surfaces of different compliance in order to operate safely. There-

fore, it is necessary to develop an understanding of how environmental flexibility

affects the stability of the force control algorithm.

This chapter describes a series of experiments performed in order to gain an

understanding of the effects that surface flexibility has upon force control algorithms.

It is divided into the following sections: Section 5.2 discusses the materials which

were used to test the force control algorithms, and section 5.3 describes the exper-

iments performed. Sections 5.4 and 5.5 discuss the results of the PAC and DFS

experiments, respectively. Finally, a brief summary is provided.

5.2 Model of Environment

A simple model of the environment used by many researchers ([7, 9], etc.)

is that of a mass-spring-damper. This model has been used to accurately pre-

dict results in force control experiments [9], and therefore has some experimental

justification.

The experiments that were performed focused on two of the parameters which

57

58

Figure 5.1:

Mc

Model of Environment

damping low

(B) hi9h

stiffness (K)

low high

plastic ball aluminum

plastic lid wood

Table 5.1: Relative flexibility of surfaces used in contact experiments

characterize the motion of the environment: stiffness and damping. In order to

investigate how these parameters affect the stability of the force control algorithm,

four surfaces were chosen for testing. They are shown in Table 5.1. The selected

materials are fairly common and their flexibility varies considerably.

Aluminum has high stiffness and low damping. The material is not easy to

deform, but may vibrate when struck. Wood has high damping and high stiffness.

Like aluminum, it is difficult to deform, yet will not vibrate readily when hit (motions

are damped out). A plastic can lid exhibits low stiffness, since it is relatively easy

to deform the lid. The lid is also highly damped; when the force is removed, the lid

takes time to return to its original position. Finally, the plastic ball has low stiffness

and low damping because it deforms easily, but returns to its original shape quickly

when released.

59

5.3 Description of Experimental Setup

Figures 2.3 and 2.4 in Chapter 2 depict the test setup used for all force control

experiments. All compliant surfaces that were tested were supported on a steel table.

This table is extremely rigid and was firmly supported on steel rails. Likewise, the

3 DOF platform which supports the PUMA is also extremely rigid. Thus, the most

flexible part of the environment was the compliant surface that was being tested.

The basic force control experiment went as follows. Using a position-based

joint level PID controller, the robot arm was positioned so that the gripper was about

1.5 millimeters above the surface to be tested. A set of force control parameters was

specified; the force control algorithm was then started, and was directed to apply a

force of 10 Newtons to the surface being tested. In order to simplify the experiments,

only forces in the tool Z direction (pointing outward from the tool tip) were used

in the force control calculations.

This basic experiment was repeated several hundred times. Each of the four

surfaces described above was tested using both force control algorithms. For each

control algorithm, one or more parameters was varied to determine its range of

stability, that is, what values the parameters could take on and still have the gripper

stably apply the desired force to the surface.

5.3.1 Varying Force Control Parameters

For the Position Accommodation Control algorithm, in order to have the grip-

per apply the desired force to the environment, the spring term was set to zero.

The initial PAC experiments consisted of two distinct sets of trials, in which one

parameter was held constant, while the other was varied. The two parts went as

follows:

• The damping term was set to a conservative (high) value, and the mass terra

was increased from zero.

o'

• The mass term was set to zero. The damping term was then set fairly high

(for slow motion), and lowered until the robot could no longer contact the

environment in a stable manner.

For the Direct Force Servoing algorithm, two parameters were also varied.

Similar to the PAC experiments, the DFS experiments were divided into two parts,

in which one control gain was set to zero, while the other gain was varied.

• Kp was set to zero, and K1 was increased until the robot-environment system

went unstable (or the forces generated exceeded a safety threshold).

• KI was set to zero, and Kp was increased until the system went unstable.

In both parts of the DFS experiments, Kid was set to zero.

5.3.2 Followup Experiments

In order to eliminate the effect of impact force on the control algorithm (rec-

ognized to be a problem by [4, 6, 9]), another set of experiments was performed.

The robot was positioned as before, and was commanded to apply a 1 Newton force

to the surface being tested, using gains which were found to be stable in the initial

experiments. After the actual force had settled to the desired value, the desired force

and the control gains were then switched to an experimental set which directed the

robot to apply a 10 Newton force to the environment. Essentially, the robot was

switched from one force control routine (with one set of parameters) to a second

routine with a different set of parameters. This eliminated the effect of the impact

spike on the performance of the control algorithm, because the gripper was already

in contact with the surface when the experimental gains were being tested.

The above gain-switching technique was performed with both force control

algorithms, and all surfaces were tested. In these experiments, the mass term was

set to zero for the PAC algorithm. Only the damping term was varied. For the

(_1

DFS algorithm, theseexperimentsweredivided into two parts exactly asthe initial

experimentswere. In eachpart, one control gain (Kp or K_) was varied while the

other was set to zero. .

5.3.3 Use Of Gripper

For all force control experiments, the gripper held a cylinder of aluminum 1.25

inches in diameter and 1 inch long. There were several reasons for this. Due to the

geometry of the robot fingers, a cylinder of this size caused the fingers to angle back

away from the cylinder. Thus, when the gripper moved down to contact a surface,

the cylinder is the part that touched the surface, instead of the gripper fingers. The

smaller area of the cylinder more closely approximated a point contact.

In practice, it is likely that the gripper would be holding an object while trying

to exert a force. An example of this is a robot using a piece of chalk to write on a

blackboard. The robot applies a force to the blackboard through the chalk. Because

the gripper will often be used in the actual application, it was logical to include the

use of the gripper in the force control experiments as well.

5.3.4 Sampling Rates

In order to be able to make some comparison between the PAC and DFS

algorithms, the following sampling rates were chosen for the main components of

the research code. The FTS channel driver was run with a period of 9.0 ms, the

joint controller was run at 4.5 ms, and the trajectory generator was run at 9.0

ms. These sampling rates were held constant for all experiments, and for both

control algorithms. In DFS mode, the controller read the forces twice as often as

the trajectory generator did in PAC mode. However, the forces were only updated

every 9 ms, so both algorithms obtained new force information at the same rate.

Because the joint-level controller was run at a sampling rate of 4.5 milliseconds for

(_

both force control modes, the torques applied to the joints by the motors (in both

modes) were updated every 4.5 ms.

5.4 Experimental Results - Position Accommodation Control

5.4.1 Varying The Mass Term

Figures 5.2 - 5.5 illustrate some typical results obtained during the first PAC

experiments. In the plots shown, the PAC algorithm is being used to contact alu-

minum; the damping has been set to 200 Newtons/_, and the mass term was

increased from 0.0 kg to 1000.0 kg.

Several things can be observed from these plots. In Figure 5.2, the steady

state force error is zero. That is, the actual force converged to the desired vahte of

10 Newtons. This indicates that the force error is being integrated, and supports

the idea presented in Chapter 3 that the PAC algorithm is an integral force control

method.

Another important feature in Figure 5.3 is the difference in the desired and

actual Cartesian positions of the end effector. The desired position is in fact inside

the object that the gripper is touching; the robot gripper cannot move to the desired

position because the material it is contacting is in the way. This difference in

Cartesian space implies that there is a difference between the desired and actual

values of the joint angles. The PD controllers (recall that joint PD control is used

during Position Accommodation Control) are applying torques to the joints in an

effort to drive the joint positions to their setpoints. Because the environment is in

the way of the gripper, these joint torques cause the gripper to apply a force to the

environment. If the desired position leaves the surface (moves out of the object),

the gripper will also tend to leave the surface. Figures 5.4 and 5.5 illustrate this.

Note that when the desired position leaves the surface of the environment, the

actual position of the gripper never lifts off of the surface to the degree specified by

63

the desiredposition setpoint (Figure 5.5). This canbe explainedby friction; it is

known that significant joint friction is presentin the robot which wasusedto test

the force algorithms. Sincethe joint controllers are PD-type, it is not unreasonable

to expect some position tracking problems. In spite of this, the PAC algorithm is

able to achieve zero steady-state force error (when the parameters l_ld and Bd are

appropriately selected).

The joint friction provides natural damping for the system, and in some ways

may even be beneficial. For example, in Figure 5.7 (B = 100.0) at time t = 0.5

seconds, the desired position leaves the surface of the material being contacted

temporarily. Due to friction however, the gripper does not leave the surface.

Figures 5.2 - 5.5 illustrate an interesting trend; as the mass increases, os-

cillations begin, with the robot gripper "bouncing" slowly on the surface. This

phenomenon occurred for all materials tested. Note that as the mass is increased,

the force (and position) oscillations increase in amplitude and decrease in frequency.

This result is not entirely unexpected. It was pointed out in Chapter 3 that

the mass term may cause oscillations in the forces. Although the assumptions made

in Section 3.1.2 are only approximated in reality, the point of the argument is still

valid: adding a mass term tends to complicate the behaviour of the PAC algorithm,

without improving performance.

The oscillation behaviour that was observed can be explained in an intuitive

manner: before the gripper contacts the environment, the force error causes the

mass-damper system simulated in the trajectory generator to move toward the

surface. The actual position of the gripper follows the desired position until the

gripper contacts the environment; at which time, force is built up. However, the

large mass being simulated limits the acceleration (how fast the velocity can change)

of the desired position setpoint. Thus, the desired position maintains its direction

of motion even though the actual position may not (due to the surface blocking the

64

35

3O

25

20

10

,I
O,

Figure 5.2: Effect of Increasing Mass Term in Position Accommodation Control:
Force Profiles

136

,35

m

:! 132

"_ 13l

130

PAn Expenmem on Alummtm: M=0, B=200

,

V

/"

/'

PAC Eapenntem on Aluminum: M= 10, B=200

/'

/

t3ot- :

129]- : :
i"

t2sb V

12qt-

1261
0

129
-- Ag_J c_pger e_,-- (ram)
.... Dem_ C_¢_ppm"Pc_itiea (tma)

Ammd Otipp_ Pem_om (ram)
.......Dm_a crept= r_ (ram)

')_ (u¢) "J_ (_e¢)

Figure 5.3: Effect of Increasing Mass Term in Position Accommodation Control:
Position Profiles

65

'25

Figure 5.4: Effect of Increasing Mass Term in Position Accommodation Control:

Force Profiles

138

136

._ 132

_ m

130,]

' -- Actuld @,dp_"P_ilim_ (mini

....... De_md Gnpl_r p_idon (m,m) ,'" ,"',

,_ ?.45 ,' _ ,: !

! 14o -". ," !/ : i : : ', ;

i]!ii+iiiiiii/iiiiiii;i/ill.
....... _.md _nVt_r,=asonOm_nO I n2ol , v ,

Figure 5.5: Effect of Increasing Mass Term in Position Accommodation Controi:

Position Profiles

66

gripper's motion). As the position error increases,sotoo doesthe forceexerted on

the environment.

After enoughtime passes,the forceerror builds tip sufficiently to changethe

direction of the simulated mass, and the desired position returns to the surface

of the environment. As the desiredposition approachesthe actual position, the

forceon the surfacedecreases.Again however,the largesimulated massbecomesa

problem. The desiredposition is movingawayfrom the surface,and the forceerror

cannot changethe direction of motion quickly enoughto prevent this. When the

desiredposition leavesthe interior of the environmentsurface, the actual position

will follow, causingthe gripper to lift off the surface.

Oncethe gripper is off the surface,the forcemeasurementsbecomezero,and

after sometime, the forceerror will build upenoughto direct the simulatedmassto-

ward the surfaceagain. The cyclethen repeats;the result is a seriesof slowbounces

on the surface. Further increasesto the massterm will reducethe accelerationof

the desiredposition setpoint still further, resulting in sloweroscillations (because

the larger masscannot changedirection as quickly) but with higher peaks in the

force readings.

In order to eliminate oscillationsdue to the simulatedmassterm, it is prefer-

able to uselow massor evenzeromassin the PAC algorithm. This has beensug-

gestedby [7, 20]; the resultspresentedhere haveconfirmedthe theoretical results

presentedby theseresearchers.

5.4.2 Varying The Damping Term

In the secondset of PAC experiments, the mass term was set to zero, while

the damping term was varied. Tables 5.2 and 5.3 show the lowest stable damping

terms determined during these experiments. Damping terms larger than the ones

shown were stable, while values smaller than those shown were unstable, causing

57

uncontrolledbouncingand/or excessiveforces.

surface Damping (B)
plastic lid 67.25
plastic ball 44.5
aluminum 68

wood 70

Table 5.2: Loweststable PAC damping valuesfound for varioussurfaces.Gripper
started approximately 1.5mm abovesurface.

surface Damping (B)
plastic lid 67.25
plastic ball 44.0
aluminum 58

wood 60

Table 5.3: Loweststable PAC dampingvaluesfound for varioussurfaces.Gripper
started on surfaceexerting a forceof 1 Newton.

The tables indicate that the range of PAC parameters may vary widely de-

pending upon the surface being contacted. Thus, the type of surface that the robot

contacts does affect the stability of the Position Accommodation algorithm. There-

fore, this force control algorithm must take into account the type of surface being

contacted.

Figures 5.6 - 5.9 illustrate what happens when the damping term is lowered.

The figures clearly show that as the damping term is decreased, the initial force spike

(which occurs when the gripper contacts the environment) increases. Intuitively, this

trend makes sense.

The Cartesian velocity of the gripper is determined by the force error divided by the

damping. As the damping decreases, the velocity of the gripper will increase. When

the gripper impacts the surface.at higher velocities, the resulting force spike is higher

63

35

3C

2_

20

10

5

O..J

Figure 5.6: Effect of Lowering Damping Term in Position Accommodation Control:
Force Profiles

136}i

134 i _'

1t2

;I

PAC Exper_em on Woed: M=O, B= 7..00

Acm,l Oripl_,Pmi_e (_)
.......Deai_d(MpI_¢Posit_a(ram)

..j°.......................................

",, ,o°_°°

?

i
>

140,

1381_

136_

1341

132[

ooF

1281-

t_F

o

i

PAC Expenme-' _ Wood: M=O,B= I00

-- Ac_l C,-fipp_"P_ tim (re,m)
.......l)elm_l Cn.ipl_ panUou (ram)

_t/'°'.,

t

Oec) _ (m;)

Figure 5.7: Effect of Lowering Damping Term in Position Accommodation Control:
Position Profiles

69

PAC Expmmmm ca Wood: M=0, B.S0
60 Q

1 Actual F_ (N)

::rlJl.......
20 •

10 - -

0 0.5 1 13 2 Z5

60_

50_

40_

301-

20F

IOF--

0

PAC Expexim_a m Wood: M=O,I].=70

/trial Fo,_ 0,')
.... Dmml Fome (N')

"[lma(_¢) T_._(_)

Z5

Figure 5.8: Effect of Lowering Damping Term in Position Accommodation Control:
Force Profiles

"m

>

PAC Eq_m_ m Wood: M--0, B--80
L45.

-- _ Ori_ Ihsitica (_)

.......DaL_ Cmp!_ P_ (_)

140

/'.::

135 _/

125

, i!

t*_ i i

_3Oli!

x_l i!

120'

PAC EXlmnme_ ca Wood: ._, B=70

.......aai_ c._ Pm (_)

J

Figure 5.9: Effect of Lowering Damping Term in Position Accommodation Control:
Position Profiles

7O

aswell. As one wouldexpect, this pattern occurredfor all surfaces,indicating that

the phenomenonis not dependentupon the surfacebeing impacted.

PAC ExpcrimBm on Plu_ Lid: M--0, B=60 PAC EllZZi_nl aD PIB6g Lid: M--O,B=60 •

IfA
2O

1I

10

0.$ 1 1 5 0 0._ I 1.5 2 2.5 3 3.5 4 4.5

T_ (_) "time(_)

Figure 5.10: Lowering Damping Term Too Far Will Cause Instability in PAC Al-

gorithm

35

3C

25

20

IS

I

10 ---_

,j
0

0

PAC Experiment Startingin _ With Alumia_: M=O,B=60

Act_ F_(N)
.......Oesm_iForoe(N)

-i-/

,oi1

:i

13G

i i i J
0.5 t 1.5 2 2.5

PAC Etpermaem Sumi_ in Cam_t With Al_in_: M=0, B--60

mtxmt Cnip_ Pamio_ (ram)
....... Desi_ r..mpper Pmtim (re.m)

"X.

,i
V

-4", --

Tim, (m) "I_ (_)

Figure 5.11: PAC Damping Term May Be Reduced By Starting In Contact With
Surface

Figure 5.10 shows the effect of reducing the damping term beyond the stability

region for the surface being contacted. In this case, the gripper was started above

the plastic lid. High frequency oscillations set in, causing large force spikes.

71

For stiff surfaces, the damping term could be reduced further when the PAC

algorithm was started while in contact with the surface. Figure 5.11 illustrates

this for aluminum. Table 5.3 shows the reduced damping gains. Note that the

lowest stable damping gain (see Table 5.2) when the gripper was started above the

aluminum surface was 68.0.

When the gripper was started in contact with the more flexible surfaces, the

damping terms could not be reduced much further. Notice that when the gripper

started in contact with the plastic lid, the damping term could not be reduced at

all.

PAC El_rbmnt Stamng In CGtmct With PIM_ Ball: M=0, B=44.5

i' t......

0 2 4 6 8 l0 12 14

Figure 5.12:
Ball

(_) "l'm(xc)

Damping Term Can Be Reduced Much More When Contacting Plastic

Finally, it should be noted when the robot contacted the ball, the damping

term could be reduced well below that for any of the other surfaces. Figure 5.12

shows the performance of the PAC algorithm on the plastic ball, with a damping

gain of 44.5. This is much smaller than the minimum value for any of the other

surfaces. Although the response is very oscillatory, it is stable.

/

72

5.5 Experimental Results - Direct Force Servoing

Several interesting results were obtained by the series of DFS experiments

described above. They will be presented in this section, along with a number of

illustrative plots.

Tables 5.4 and 5.5 summarize the range of stable gains determined during the

experiments. Gains larger than those shown caused instability (either bouncing with

increasing amplitude of oscillation, or excessive forces which caused safety code to

stop the experiment).

surface I,'p (I(, = 0) = 0)
plastic lid 0.0 - 4.8 0.0 - 16.2

plastic ball 0.0 - 5.7 0.0 - 10.6

aluminum 0.0- 1.52 0.0 - 30.0

wood 0.0 - 1.52 0.0 - 33.0

Table 5.4: Range of DFS gains for which force control is stable. Gains were varied

separately. Gripper started 1.5 mm above surface.

surface Kp (K, =0) K_ (Kp = 0)

plastic lid 0.0 - 7.0 0.0 - 16.6

plastic ball 0.0 - 6.3 0.0 - 12.7

aluminum 0.0 - 2.20 0.0 - 70.0

wood 0.0- 1.84 0.0- 66.0

Table 5.5: Range of DFS gains for which force control is stable. Gains were varied

separately. Gripper started on surface exerting a force of 1 Newton.

The tables indicate that the range of stable gains varies considerably for the

different surfaces. This held true for both the proportional and integral direct force

control experiments. Thus, the type of surface that the robot contacts does affect

the stability of this force control algorithm. Therefore, the DFS algorithm must also

take into account the type of surface being contacted.

o '

73

5.5.1 Direct Integral Force Control

The integral force control algorithm performed similarly on both the aluminum

and wood surfaces. This is reflected in the fact that the range of stable gains for

both materials are so similar. Figures 5.13 and 5.14 illustrate the performance of

the direct force servoing algorithm on wood. For these plots only integral control

was used, and the gripper was started above the surface of the wood. Note that

as the integral gain is increased, the response time of the system improves; when

K, = 5.0, the robot requires above 1.5 seconds in order to achieve the desired force.

When I(, = 20.0, the desired force is achieved in about 0.5 seconds.

Another phenomenon which can be seen in these plots is the initial force spike

which occurred upon contact of the gripper with the environment. As If, was

increased, the force spike also increased. This phenomenon has also been noted by

other researchers [9]. Note that when K_ = 30.0, the gripper lifted off the surface

after the initial force spike.

This bouncing is due to the integral action. When the algorithm first starts,

the gripper is above the surface. Thus, the force on the environment is zero, and

the force error is non-zero. This error is integrated and scaled to produce the force

control signal, which is then converted into joint torques. Note that before contact,

the control signal (and hence the joint torques) is the highest for the K, = 30.0

case. Thus, the joints axe being driven harder than in all of the previous cases,

which results in the greatest impact force. Because of the integral control and high

gain, the control signal changes rapidly in response to the force spike and causes the

gripper to pull off the surface slightly before settling.

As the gain is increased, eventually a point is reached where the force spike is

large enough to cause the gripper to pull away from the surface to the same height

that it started from. This is the point of marginal stability; in this situation, a

series of force spikes would occur, each causing the gripper to pull away from the

74

surface to the starting height. Increasingthe gain beyond this point would cause

the system to become unstable because each bounce would be higher than the last,

causing ever-increasing force spikes. The instability phenomenon is illustrated in

Figures 5.15, when the gripper was contacting the ball.

4O

30

g 2o

0

40

-20
0

DF$ Expe.nn_mon Wood: IG = 5.0 DFS Ex_ oIWood: I_ = [0.0

"I_me(_:) _ Oec)

Figure 5.13: Performance Of Direct Integral Force Control Algorithm on Wood:

KI = 5.0, 10.0

50

30

20

I0

-I

DFS Expmmm_ cmWood: KI = 20.0

-- Ac_xlFor_ (N)
.......Dw_IFo_ (N)

_i F Signal

w_auw_ :

,_:

. .++.

60 I

I
501-

I

°T
30 _

2O

10

0

-I0

-2O

-3O

DFS Expm'mmmon Wood: K1= 30.0

-- Actual Force (N)
.......g_dFo_ _)

.......Fmm_(_

...+.

'i

15 i x] _ z5

Tu_(sot) Tim(m:)

Figure 5.14: Performance Of Direct Integral Force Control Algorithm on Wood:

Kt = 20.0, 30.0

A comparison of Tables 5.4 and 5.5 indicates that impact force is a problem.

Io

For every material, the integral gains could be increased when the gripper was

started in contact with the surface. For the stiffer surfaces, the integral gain could

be increased dramatically. An example of this is shown in Figure 5.16. Note that

for this run, the integral gain is set at twice the maximum value that was found to

allow the gripper to contact the aluminum block. The plot shows that when the

algorithm was started, the force on the aluminum block was 1 Newton. The system

was stable, and achieved the desired force of 10 Newtons in less than half a second.

While raising the integral gain higher will provide faster response time, there is

a potential hazard in doing so. With very high integral gains the robot-environment

system is stable only as long as the gripper stays in contact with the environment. If

the gripper leaves the surface (due to a disturbance, for example), excessive integral

gains will cause the control algorithm to drive the gripper back to the surface,

causing large impact forces.

60

50

40

30

20

10

0

-10

0

DFS Exl_irncnton Plan_cBall:KI = 11.0

-- Actual Force (N)
....... Desired Force (N)
............ F Signal (N)

i
i

? :

i I I

/.
i -

i

6

Time (SeC)

Figure 5.15: Integral Force Gain Is Severely Limited on Plastic Ball

The tables also indicate that the range of stability for the integral gains is

]'(i

DFS Experiment Starung In Contact With Aluminum: KI = 60
3O

/

25

/ [i F Signal (N)

0 0.5 1 1.5 2 2.5

Time (sec)

Figure 5.16: Integral Gain Can Be Increased When Starting In Contact With The

Aluminum Surface

much wider on stiffer surfaces than on more compliant surfaces. Figures 5.17 and

5.18 show the effect of an integral gain of 15.0 when the lid was contacted. Note

the oscillations in the force and position graphs. Even though the gain was low, the

system exhibited damped oscillations. Comparing this with Figure 5.14 (/(_ = 20.0),

it is apparent that the higher integral gain is not as appropriate to use when the

environment is more flexible.

The performance of direct integral force control when contacting the ball was

even worse than when contacting the plastic lid. Figures 5.19 and 5.20 show the

performance of the system when integral force control was used on the ball, with a

gain of 10.0. Again, it is apparent that the integral control does not perform as well

on the softer surface. When a gain of 11.0 was used to contact the ball, the system

went unstable (Figure 5.15).

Figure 5.19 also shows another problem. After 5 seconds, the actual force is

still not equal to the desired force. Note that the control signal is winding up after

77

60

50

40

30

20

10

0

-10

-20

0

DFS Experiment on Plastic Lid: [] = 15.0

Actual Force (N)
....... Desired Force (N)
............. F Signal (N)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (sec)

Figure 5.17: Performance Of Basic Integral Force Control Algorithm on Plastic Lid:
Force Profile

E
E

.rn
"4
g.

278

276

274

272

270

268

266

DFS Experiment on Plastic Lid: KI = 15.0

-- Gripper Position (ram)

I i2640 0:5 3:5 ,, ,,.5 5

Time (see)

Figure 5.18: Performance Of Basic Integral Force Control Algorithm on Plastic Lid:

Position Profile

78

30

25

20

15

10 i
-5 i

-10

-15 ,. :

i

-200 015 1

DFS Experiment on Plastic Ball: KI = 10.0

Actual Force (N)
....... Desired Force (N)

-... F Signal (N)

: - . ,..

i

L

...:

1.5 2 5 3 5 4 4.5 5

Time (see)

Figure 5.19: Performance Of Direct Integral Force Algorithm on Plastic Ball: Force

Profile

"ff
g

£

>

,50
445

440

435

430

4250 015

DIS Experiment on PlasticBall: KI = 10.0

Gripper Position (mm)

i i i i i i i i

1 1.5 2 2.5 3 3.5 4 4.5 5

Time (see)

Figure 5.20: Performance Of Direct Integral Force Algorithm on Plastic Ball: Po-

sition Profile

79

time t = 3 seconds. From the position plot, it can be seen that even though the

control signal (and hence, the joint torques) is changing, the position of the gripper

is not moving. This phenomenon is due to the joint friction mentioned previously.

In this case, the joint friction has prevented the arm from moving, and the torque

has to wind up in order to overcome it. For this test run, the desired force was

achieved by time t = 6.5 seconds.

5.5.2 Direct Proportional Force Control

As was discussed in Chapter 4, pure proportional force control is not as robust

as integral force control. Evidence for this is given in Tables 5.4 and 5.5; the range

of stable proportional gains is much more limited than the range of stable integral

gains. This was found to be true for all surfaces. Figure 5.21 shows the result of

increasing the proportional gain beyond the limit set for aluminum. High frequency

bouncing was observed, with very large force spikes. Notice that the proportional

gain for this case is only 1.7.

In addition to the more limited stability range, pure proportional control also

exhibits steady state error. This can be seen from Figure 5.22; after the transient

disappears, the force value hovers around 7.5 Newtons. This is entirely expected

from classical control theory; this feature, along with the more limited range of

stable gains makes proportional control less attractive than integral control.

As with integral control, the proportional gains could be increased when the

control algorithm was started in contact with the environment. Thus, impact forces

also contribute to the force control problem when direct proportional force control

is used. Figure 5.22 illustrates an example of this phenomenon. Notice that the

proportional gain is 2.0, which is higher than the maximum stable gain when the

gripper started above the surface (Ke = 1.52 for aluminum).

It should be noted from the tables that the range of stability for the direct

80

z

100

8O

6O

4O

2O

0

-20

-40

-60

-80I

-100
0

DFS Experimenton Aluminum: KP = 1.7

ActualForce(IN)
.......DesiredForce(N)
...........F Signal(N)

ii i
i:

0.5 1 1.5 2 2.5

Time (see)

Figure 5.21: Small Proportional Gains May Cause Instability On Aluminum: Force
Profile

z

20
DFS Experiment Starting In Contact With Aiuminum: KP = 2.0

15

10 -i -

-- Actual Force (N)
:i Desired Force (N)

............ F Signal (N)

"50 0 2 0.4 0.6 0.8 | 12

Time (see)

Figure 5.22: Proportional Gain Can Be Increased When Starting In Contact With

Aluminum Surface

81

proportional force control increased when the surface being contacted was more

flexible. This was opposite to the pattern of behaviour for the integral force control.

5.6 Summary

This chapter discussed a series of experiments designed to investigate how the

flexibility of the environment may affect the stability of force control algorithms. The

results seem to indicate that stiffer surfaces improve the range of stability for direct

integral force control, while more compliant surfaces improve the stability range of

direct proportional force control and position accommodation control. From the

results presented here, it is clear that the environmental flexibility affects the force

control parameters which can be used; therefore, any force control algorithm must

take into account the type of surface to be contacted.

CHAPTER 6

Improvements to the Direct Force Servoing Algorithm

6.1 Motivation

As was shown in the previous chapters, both the PAC and DFS algorithms

have difficulty when initially coming into contact with the environment. A typical

example of the DFS algorithm is shown in Figure 6.1. The gripper was positioned

about 1.5 mm above an aluminum block, and the DFS algorithm was initiated. As

the plot shows, when the gripper first contacts the environment, there is a large force

spike, after which the gripper quickly achieves the desired force on the environment.

DFS Experiment on Aluminum: KI = 20
6O

2.

5O

4O

30

i

20 .;

10 -_--

0.../

-10

Actual Force (N)
....... Desired Force (N)
.............. F Signal (N)

L.':

i I I I0 05 1 1.5 2 2.5

Time (see)

Figure 6.1: Typical Performance OF DFS on Aluminum

Figures 5.13-5.14 show the performance of the basic integral force feedback

algorithm on wood for a range of integral gains. Note that as Kr is increased, the

response of the system speeds up. This is desirable as a tighter loop implies better

82

83

transient response(steadystate force is quickly reached)and disturbancerejection

(a disturbanceforcewill causesmallerdeviationfrom the setpoint -- assumingthat

the arm stays in contact with the surface). However,higher gain also results in a

larger force spike when the gripper first contacts the aluminum surface. For the

casewhen K_ = 30, the gripper bounces once on the surface. This effect limits the

practical size of the integral gains, even though higher gains can be used if the arm

always stays in contact with the surface.

As noted in Chapter 5, the initial force spike increases as the integral gain is

increased (for the same starting height above the surface). If this spike becomes

large enough, it will cause the gripper to lift off the surface again due to the integral

control. (This effect has also been noted by [10]). For practical operations, it

is imperative to reduce the initial force spike when coming into contact with the

environment.

An additional problem is illustrated by Figures 6.2 and 6.3. These figures show

how the basic DFS Algorithm may behave when a disturbance is applied to the robot

while it is in contact with the environment. In this experiment, a disturbance was

applied at time t = 6.75 seconds. Because it was fairly large, the integrator in the

force loop wound up; when the disturbance was removed, the arm overcompensated

due to the integral term. Safety code then stopped the arm because the impact force

exceeded a threshold. This example clearly shows that the system is not robust with

respect to disturbances even though the arm behaves stably while in contact.

Motivated by these examples, modifications to the basic DFS algorithm should

help to achieve the following goals:

• Reduce the force spikes upon contact with the environment.

• Maintain contact with the environment in the presence of disturbances.

84

v

Figure 6.2:

80

6O

40

20

0

-20

-40

-60

-80

DFS Experiment on Aluminum: KI = 20

-- Actual Force (N)
....... Desired Force (N)

...... F Signal (N)

/

/

/

,/

6.5 7.5 8 85 9

Time (see)

Disturbance Induced Instability in Basic DFS Algorithm: Force Profile

g

._,'n

Figure 6.3:

Profile

190

180

170

160

150

140

DFS Experimertt on Aluminum: KI = 20

Maxamum height achieved: 191.3 trun

-- Gripper Position(m

Time (sec)

Disturbance Induced Instability in Basic DFS Algorithm: Position

85

6.2 Modifications to the Basic DFS Algorithm

Three modifications to the basic DFS algorithm are discussed in this chapter.

Test results are provided to demonstrate how each modification affects the perfor-

mance of the DFS algorithm. Finally, all modifications are combined at the end of

this chapter.

6.2.1 Integral Error Scaling

The control law in the basic algorithm (recall that Kp and KIn were set to 0)

is of the form:

_0 tF = Kz f_r_(s)ds (6.1)

where f_r_(t) = (fd - f(t)). As was shown in Chapter 5, for a suitable range of I(f,

this control law stabilizes the closed-loop system.

The integral error term will tend to cause overshoot in the force applied to the

environment. It is important to realize that the robot-environment system is such

that it is more acceptable to overshoot in one direction than the other. Overshoot

when the robot is pushing into the surface (increasing the force) results in an actual

force which is higher than the desired force. Overshoot when the robot is pulling

away from the surface (decreasing the force) may result in the gripper breaking

contact with the environment. In the process of reestablishing contact, there may

be high impact forces which cause the system to go unstable.

Consider the following situation: The robot gripper is touching the environ-

ment, and applying a force of 10 Newtons. Assume a disturbance of 20 Newtons is

applied so the actual force becomes 30 Newtons for a period of time. The integral

action will try to force the arm off the surface in order to reduce the force back to

the 10 Newton setpoint. If this response is too fast, the contact may be broken. If

a disturbance of 20 Newtons is applied in the opposite direction, then the contact

86

would be broken. It is now desirableto bring the arm back in contact with the

surfacequickly to reestablishcontact. Thus, it is desirableto have different speeds

of responsedependingon the direction of the force overshoot. One way to help

achievethis behavior is to modify the error term ferT in the control law, based on

the sign of the force error:

t

fd - f(t)
f_(t)

t _(fd- f(t))

if fd- f(t) > o

iffd-f(t)<0

where0<__< 1.

Consider how this would affect the scenario described above.

When the initial force on the surface is 10 Newtons, and the 20 Newton dis-

turbance pushes the gripper away from the surface, the controller will attempt to

overcome the disturbance just like the unmodified algorithm. If the 20 Newton dis-

turbance causes the actual force to increase above 10 Newtons, however, the fer_

term is attenuated due to the scale factor, /3. Thus, the integral error term doesn't

change as quickly, and the tendency for the gripper to bounce back off the surface

at this point is reduced. The result is a reduced retraction motion of the arm, which

may either result in a smaller jump from the surface or eliminate the breakoff of

contact altogether.

Figure 6.4 shows the effect of decreasing the scale factor/7 on the performance

of the DFS algorithm. Note that as/3 is decreased, it takes longer for the robot to

achieve the desired force. As/3 approaches 0, the response time of the system will

approach infinity. That is, if 13 = 0, the system would overshoot the desired force,

and would not decrease again, since the integral term in the control law would stop

changing. Thus, there is a tradeoff between the overshoot that can be tolerated and

the response time of the system.

Figure 6.5 shows the force trajectory using the DFS algorithm and integral

error scaling. In this case,/3 = 0.2. Comparing this with Figure 6.1, notice that the

$?

DFS with Integral Earor Scaling: Beta= 1.0, 0.8, 0.6, 0.4, 0.2, 0.1

6O

5O

4O

30

20

,°J
0

0

Betaffi 1.0
....... Beta= 0.8
.............. Beta= 0.6
......... Betaffi 0.4

Beta = 0.2
....... Be,ta = 0.1

•. _ 0.2 ""-,..

-_-_. "'_'_'_":----_.:.___._..................

i i

0'.5 i _.5 _ _5 3

Time (sec)

Figure 6.4: Effect of Scaling the Integral Error Term in DFS Algorithm

30

2O

10

°f-10

-20
0

DFS With Integral Force Scaling: KI = 20, Beta ffi0.2

Actual Force (N)
....... De,si_d Force (N)
............. F Signal (N)

"i

.,,

"% .,,. ,""

"..........,:"

o15 _ ,'.5_ ;.5 _ 315 _ ,15

Time (se,c)

Figure 6.5: DFS Algorithm With Integral Error Scaling

88

force spike has not been reduced at all. However, the rate of change of the actual

force (and the control signal) has been reduced.

40

30

2O

10

0

-10

-20

-30

3.5 4

DFS With Integral Error Scaling: K/= 20, Beta = 0.2

Actua/Force (N)
DesiredForce (N)
F Signal(I'4)

/
i -,.

•.. : '
i

'_. f

4.5 5 5.5 6

Time(_c)

Figure 6.6: Disturbance Rejection of DFS Algorithm With Integral Error Scaling

Figure 6.6 shows the performance of the modified system when the robot was

disturbed as before. Note that the disturbance is larger than in the initial case

(Figure 6.2), but that the amplitude of the control signal is smaller, and that the

reaction of the gripper is somewhat improved. The gripper came off the surface

slightly, but returned without going unstable, and again settled on the desired force.

6.2.2 Variable Desired Force

A force control algorithm is used to allow the robot to come in contact safely

with the environment. Thus, it is necessary to start a force control algorithm prior

to coming in contact with the environment. As mentioned previously, the robot was

positioned approximately 1.5 millimeters above the surface and the force control

algorithm was used to initiate contact with the environment.

89

When the DFS algorithm is started, the integrator beginsto wind up. This

builds up the torqueappliedto the joints until the arm movesinto the surfaceof the

environment. However,betweenthe time that the arm starts moving and _hetime

that the gripper contacts the surface, the integrator winds up evenfurther. This

excessivewindup contributes to an overshootof the force applied to the surface

(the initial forcespike). Increasingthe control gain K1 improves the response of the

system, but adds to the windup and increases the impact force.

Consider the feedback control law in equation (6.1). If fd is close to f initially,

then f_r_ is small and the integrator will wind up more slowly than it would if f,r_

were large. Thus, another method to improve the behavior of the DFS algorithm

is to modify the desired force so that it is "close" to the actual force initially, and

after contact with the environment ensures that the final force value (in this case,

10 Newtons) is achieved. By doing this, the integrator windup should be reduced,

thereby reducing the impact force.

While the gripper isn't in contact with the environment, the actual force is

zero. It would be desirable to have a small positive desired force, so that the

integrator winds up slowly. After contact, the desired force value should be increased

to its final level.

Figure 6.7 shows the desired "trajectory" of the desired force. The plot requires

some explanation. For the experiments presented here, the desired force value that

was used was based upon the actual force reading. In this way, the desired force

value could be kept "close" to the actual force reading, helping to reduce integral

windup.

In order to prevent force spikes (due to impact, disturbances, or noise) from

causing a spike in the desired force reading, the forces read from the sensor were

filtered using a simple discrete-time first order filter:

9O

10

Relationship Between Filtered Force and Desired Force

6
Q

4 /
-5 -4 -3 - -1 0 1 2 4 5

Filtered Force (N)

Figure 6.7: Modifying fa Based on Filtered Force Readings

flirt[k] = afyitt[k - 1] + (1 - _)f[k], 0 _< a _< 1 (6.3)

The fd value at every sampling interval is calculated as follows: the force

sensor is read, and the force value is filtered. This filtered force value is then used to

calculate the desired force, fd, according to the relationship depicted in Figure 6.7.

This value of fd is then used in the feedback control law, along with the unfiltered

force, f. The filtered force is not used in the control law; it is only used in the

determination of fd.

It should be noted that the slope of the transition between the initial and

final desired force values is important. In the transition, it is desirable to have

fd(x) > flirt(x). That way, for any given filtered force, the corresponding desired

force will have a greater value. This will tend to increase the actual force, and so

the actual force will tend toward the final desired force.

Figure 6.8 shows the performance of the basic DFS algorithm modified to

:)l

DFS With Changing Dcsir_l Force: KI = 20, alpha = 0.9

15

l0

ActualForce(IN)

.......DesiredForce(N)

.............F Signal(IN)

, q

...... 1

0-.,---"I

-5

,.-"

./

Time (scc)

Figure 6.8: Effect of Modifying the Desired Force Based on Contact Force

vary the desired force as described above. Note that the desired force starts out at

1 Newton, and upon contact with the surface quickly ramps up to 10 Newtons. A

comparison of Figures 6.8 and 6.1 shows some other important points. As predicted,

the control signal is reduced when the desired force is modified. Further, notice that

the initial force spike has been reduced considerably.

An important consideration in the implementation of this modification is the

choice of the filter coefficient. Figure 6.9 shows the result when the filter coefficient

is chosen too large (too close to 1). The filter becomes very low-pass, and the force

control algorithm is unable to adjust fd for rapidly changing forces. In the abow_

experiment, the filter was so slow that the gripper settled on the initial desired force

of 1 Newton, and after several seconds the desired force was increased to 10 Newtons,

while the actual force tracked it.

Note that if a is set to 1, the goal force of 10 Newtons would never be achieved,

since the filter would never take in any information about the actual force readings.

o

9._)

18

16

14

12

10

8

6

4

2

0
0

DFS With Changing Desired Force: KI _- 20, alpha = 0.9999

Actual Force (N)
....... Desired Force (N)

5 10 15 20 25

Time (sec)

Figure 6.9: Result of Excessive Filtering on Desired Force Trajectory

If a is set to zero, the filter is not being used, and the desired force is then subject

to noise spikes in the actual force readings. Thus, there is a tradeoff between the

response time of the system and its susceptibility to force spikes.

Figure 6.10 shows the performance of the system in the presence of a distur-

bance in the actual force. The disturbance occurs at about t = 5.6 seconds. When

the disturbance is removed from the system, the control signal causes the system

to undershoot the desired force. In this case, the gripper leaves the surface of the

aluminum block. Notice that the desired force value is reduced when the force read-

ings go to zero, and return to the final value when the gripper contacts the surface

again. Note also that the integrator winds up more slowly when the gripper loses

contact with the surface than when the gripper is in contact with the surface.

93

4O

DFS With Changing Desired Force: KI = 20, alpha = 0.9

30

20

.-. 10
Z

-10

-20

-30

-40
5

.!

515 6

-- Actual Force (N)

....... Desired Force (N)

.............F Signal (N)

: , : , : ,65 7 75 8 85 9 9.5 I0

Time (see)

Figure 6.10: Disturbance Rejection of DFS Algorithm With Force Trajectory

6.2.3 Force Signal Clipping and Integral Windup Prevention

Another modification to the basic DFS algorithm is to clip the control signals

which are calculated in the basic control routine. For the experiments presented

here, two control signals were clipped:

* F -- the control signal which is multiplied by the transpose Jacobian (jT) in

order to obtain the joint torques.

t
• The integral of the error term, fo f_r_(s) ds.

The force control signal F was clipped because this limits the maximum torque

which can be applied to the joints. By limiting F, the maximum force which can be

applied to the environment is also limited. Care must be taken to ensure that the

force signal can still be made large enough so that the robot can achieve the desired

force.

94

The integral error was clipped so as to prevent the integrator from winding up

too far. If a disturbance (such as shown in Figure 6.2) is too large, the integrator may

wind up far enough to cause excessive forces and instability when the disturbance

is removed.

Clipping signals is a common strategy in control systems. Indeed, all physical

systems have physical limitations, and cannot output signals with infinite amplitude.

This modification to the algorithm alters the control equations as follows:

r = jTsat(F) + [t(O) (6.4)

_0 t
F = K, sat(fa - f(t)dt)

The saturation function, sat(), is defined as:

(6.5)

pl x _< Pl
sat(x)= x pl <x<P2 (6"61

p_ x < P2

where pl < p2.

Figure 6.11 shows the effect of this modification on the performance of the

basic DFS algorithm. In this case, the control signal was clipped at +20 Newtons.

The integral term was clipped at 4-2 Newtons. Since Kr = 20, this allowed the

unclipped F signal to reach 40 Newtons. Notice that that in the beginning of the

plot, (just prior to the force spike), the force control signal is clipped at 20 Newtons.

A comparison of this figure with Figures 6.1 and 6.8 shows that the control signal

F is less than the case when only the basic algorithm was used, but more than the

case where the desired force was varied.

Figure 6.12 shows the disturbance rejection abilities of this modification to the

DFS algorithm. Even in the presence of a prolonged large disturbance, the system

95

z

Figure 6.11:

Prevention

50

4O

30

20 " "

10--

0

-10 -

DFS With Control Signal Clipping: KI = 20, -20 <= F <= 20, -2 <= int(f_err) <= 2

-- Actual Forge (N)
....... Desi_d Force (N)
............ F Signal (N)

\:

i ' ' ' _5 _ 'o o5 1 _.5 2 _.5 ,
Time (see)

DFS Algorithm With Control Signal Clipping and Integrator Windup

8O

60

40

20

-2{

DFS With Control Signal Clipping: KI = 20, -20 <= F <= 20, -2 <= int(f_err) <= 2

--- Actual Force (N)
....... DosedForce(N)
..............FSignal(N)

I̧ "............. r T-: i I

Time (scc)

Figure 6.12: Disturbance Rejection of DFS Algorithm With Control Signal Clipping

and Integrator Windup Prevention.

96

was able to recover nicely and return to the desired force level.

6.2.4 Combined Modifications

Each of the previous modifications help the DFS algorithm in some way. The

signal clipping limits the windup of the integrator, and prevents excessively large

control signals. Varying the desired force also helps limit the force control signal,

and provides a more natural "trajectory" for the force controller to follow than just

a constant force setpoint. The scaling of the integral error term helps prevent the

gripper from leaving the environment surface. By combining the modifications, an

improved DFS algorithm is obtained. This algorithm has many of the best features

from the above modifications.

The control equations for the augmented DFS algorithm then become:

r = jT sat(F) + _(0) (6.7)

o tF= Kp(fd- f)+ K, sat(f(s)ds)+ IQdfd(t) (6.8)

f

fd(t) -- f(t) if fd(t) -- f(t) > 0 (6.!))L,(t)

(/3(fd(t) -- f(t)) if fa(t) -- f(t) < 0

where 0 < /3 _< 1. The value of f4 is modified as described above, according to the

relation shown in Figure 6.7.

Figures 6.13 and 6.14 show the position and force trajectories of the robot

gripper. As before, the gripper was started at about 1.5 mm above the surface.

Notice that the initial impact force is reduced due to the varying desired force

modification. The robot was then disturbed by having a person push on the robot

at time t = 10 seconds. Notice that the control torque ramped up to the maximum

97

£

Figure 6.13:
ForceProfile

DFS on Aluminum: KI = 20,Alpha= 0.9,Beta= 0.2,-20<= F <= 20,-2<= h'at(f..err)<= 2
6O l

50 /_ [-- Actual Force (N)
W Desired Force (N)

..............F Signal(N)
40

iI' t-- Ii i.
0 5 I0 15 20 25 30 35 40

Time (sec)

Disturbance Rejection of DFS Algorithm With All Improvements:

DFS on Aluminum: KI = 20, Alpha = 0.9, Beta = 0.2, -20 <= F <= 20, -2 <= int(f_err) <= 2
138

137.8

137.6

137.4

137.2

:4 137

136"4t i

0

-- GripperPosition(mm)

grippe, lift.ed off
flu__xrface oy
a human operator

I I; 1'0 1; 20 /_ 30

Time (see)

_d

/
3's 40

Figure 6.14: Disturbance Rejection of DFS Algorithm With All Improvements:
Position Profile

98

and was then clipped. When the robot was released, the force returned to normal.

The gripper only changed vertical position slightly (much less than a millimeter).

At time t = 23 seconds, a second disturbance was introduced. The" gripper

was lifted off the surface, allowing the controller to wind up in the other direction.

Note that the desired force also changed, in an attempt to help limit the windup.

When the robot was released, the robot again settled on the surface, and achieved

the desired force of 10 Newtons.

6.3 Summary

In this chapter, three modifications to the Direct Force Servoing Algorithm

have been presented. These modifications help to reduce the initial impact force of

the robot gripper on the environment and maintain contact with the environment

in the presence of disturbances. By combining all of the modifications into the DFS

algorithm, the best features of each modification have been incorporated. The result

is a force control algorithm which maintains contact with the surface and remains

stable in the presence of large force disturbances.

CHAPTER 7

Further Discussion of Position Accommodation Control and Direct

Force Servoing

7.1 Introduction

This chapter suggests general tuning processes for the two force control algo-

rithms. The intent is to provide the reader with some insight into the tradeoffs and

problems which are encountered when tuning each of the controllers. A comparison

of the Direct Force Servoing and Position Accommodation Control algorithms is also

presented, in order to provide the reader with the an idea of the benefits and costs

of each method. The first section discusses the tuning process for each algorithm,

while the second compares the two algorithms on a number of issues.

7.2 Choosing Gains In a Flexible Environment

The goal of the tuning process is to determine a set of gains which will allow

the given force control algorithm to stably contact the environment, and apply some

desired force. It would be preferable to have one set of gains which could be used

to reliably contact a wide variety of different surfaces. The tuning processes are

described below. Because the two algorithms are so different, the tuning procedures

differ as well.

7.2.1 Position Accommodation Control

7.2.1.1 Mass

The results presented in Chapter 5 suggest several strategies for tuning the

PAC force control algorithm. One of the most important is to have low mass or zero

mass in the simulated MSD system. This allows the algorithm to alter the desired

99

I00

setpoint as quickly as possible in response to changes in the measured forces.

The theory presented in Chapter 3 indicates that elimination of the mass term

also helps to eliminate oscillatory behaviour in the convergence of the for(zes. By

removing the mass parameter, the order of the system is reduced, along with the

configuration dependence.

7.2.1.2 Spring

In the Cartesian directions in which a given force is to be applied, there should

be no spring force (that is, Kd = 0.0). As discussed in Chapter 3, the spring force

serves to help keep the gripper close to the PAC algorithm's reference position. If

the spring parameter is non-zero, the actual force in steady state will not equal the

desired force.

For an axis (degree of freedom) in which no forces are to be applied, it may

be reasonable to have a spring term. The spring term will tend to keep the gripper

position constant along that axis. This helps prevent the gripper from drifting in

other directions (due to noise in the force measurements) while the PAC algorithm

is being used to apply a force along one axis. However, force disturbances along

these other axes will cause the gripper to move out of the way, complying to the

forces.

7.2.1.3 Damping

In the directions in which forces are to be applied, the damping parameter

should be set to a conservative value (i.e. within the range of stability for the

surface to be contacted). This value will determine the maximum speed of the

gripper (recall that the maximum velocity will equal the force error divided by the

damping). As the damping is increased, the velocity of the gripper will decrease,

thereby decreasing the impact force. There is a tradeoff between how quickly the

101

desired force can be achieved, and the impact force that can be tolerated.

For an axis in which no forces are to be applied, but in which compliance

to external forces is desired, it is imperative that there be a damping term. The

damping term is a dissipative element and helps to stabilize the system.

The tuning process essentially consists of setting the spring and mass terms to

zero, and then lowering the damping parameter until a satisfactory balance between

gripper velocity and impact force have been achieved. The data suggest that stiffer

surfaces need the highest damping, especially when initially contacting the surface.

Once tuned for stiffer surfaces, the same gains can be used for more compliant

surfaces.

7.2.2 Direct Force Servoing

Both the theory and experimental results indicate that integral force control

is more robust with respect to time delay than proportional force control. Integral

control also is better in terms of steady state error. Thus, it is preferable to use

integral force control instead of proportional control.

The experimental data suggest that Kz can be increased more for stiffer sur-

faces than for flexible surfaces. Thus, if the same control gains are to be used for

several surfaces, it would be best to tune the controller for the most flexible surface.

The data also suggest that Kp can be increased more when the environment is

flexible. Therefore, if proportional control is to be used to contact several surfaces,

it would be best to tune the controller for the least flexible surface.

The tuning process for the basic DFS algorithm would consist of increasing

the integral (proportional) gain until the desired response is achieved by the force

controller. Increasing the gain will improve the response time of the controller, up to

a point. As the gain is increased, oscillations in the force will set in, and eventually

the system will go unstable.

_02

Three modifications to the direct integral forcealgorithm were discussedin

Chapter 6. Theseweredesignedto improvethe robustnessof the control algorithm.

The improvementshave additional parametersassociatedwith them, and"the ad-

justment of theseparametersincreasesthe complexityof the tuning process.They

will be discussedbelow.

7.2.2.1 Integral Error Scaling

As discussedpreviously, the integral error scaling tradesoff the settling time

of the systemwith the ability of the systemto handleovershootin the forcemea-

surements. In sodoing, it helps the gripper to stay in contact with the environment.

The parameter which can be tuned for this modification is /3, and is shown

in equation (6.2). This parameter will directly affect the h'j gain. Consider the

problem of increasing the integral gain: as the gain is increased, eventually the

impact force causes the gripper to lift off the surface. The integral error scaling

term (/3) opposes this by slowing the response time when the actual force is greater

than the desired force. By decreasing/3, the response time is increased, allowing the

integral gain to be increased.

Figure 7.1 shows two examples of the DFS algorithm being used to contact

a piece of wood from a height of 1.5 millimeters. Table 5.4 shows that the largest

stable Kr gain for the basic DFS algorithm in such a situation was 33.0. These two

runs show that the/3 term can have an significant impact on the range of K_.

Note that in the plot for K_ = 100.0, the gripper bounced twice on the surface.

With/3 = 0.2, it was found that the integral gain could be increased to 102.0 before

the system went unstable. By decreasing /3 to 0.1, however, it was possible to

increase Kr still further. See Figure 7.2.

Note that modifying the parameter/3 does not affect the size of the impact

force. It does however, improve the ability of the integral controller to handle large

103

I_$ ExFe_memonWoodWithIazSral _'mt _cslias: KI-. ID[10,be,,,: 0.2
l_S Es_ m WoodW_ Is.u_r:lP.am'Scsli_: K1"-S0.0,kts =0-2

100[• ' '_ Actusdl_ace(N) / | e l)e_e,tFofce(N)

4o:

2

Ti_ (Ic)
(aec)

Figure 7.1: Integral Error Scaling Allows Higher Integral Gains

DFS Expcrimeaat on Wood With Integral Error Scaling: KI =: 120.0, beta I: 0.1

....... l:)¢simdFor¢_ (N)

..............F Si_ (S)

.... , ..

I | i

0:5 1 1.5 " 2 7 5

Timc (se_)

Figure 7.2: Still Higher G_ins Can Be Achieved By Reducing Beta

o

104

force spikes.

The effect of/3 and Kt on the system should be kept in mind when tuning the

controller. For a given integral gain, decreasing/3 will increase the settling time of

the system. (Figure 6.4 illustrates this.) The settling time can be reduced again by

increasing the value of Kz, but this in turn will cause larger impact forces.

The size of the impact force which can be tolerated by the environment will

limit the size of the integral gain which can be used. In turn, the settling time which

can be tolerated will limit the value of/3.

7.2.2.2 Variable Desired Force

Varying the desired force helps to reduce the impact force when the gripper

contacts the environment. The variable desired force modification actually has five

parameters. Four of the parameters determine the shape of the force trajectory, by

specifying the corner points of the piecewise linear relationship between the filtered

and desired force. The fifth parameter is the coefficient for the filter which is used

on the force measurements.

As discussed in Chapter 6, care must be taken when choosing the curve which

describes the relationship between the filtered and desired force. Specifically, if the

controller is being used to come into contact with the environment, it is important

that the desired force be larger than the filtered force until the goal force is achieved.

If this relationship holds, then the controller will tend to increase the force applied

to the environment until the actual force reaches the goal.

The requirement that the desired force be larger than the filtered force can be

pictured geometrically. Figure 7.3 shows a line where the desired force equals the

filtered force. This is a line of equilibrium; an equilibrium point will exist where

the filtered-desired force curve crosses this line. In order to have the desired force

be larger than the filtered force, the filtered-desired force curve must lie above this

105

equilibrium line.

Those sections of the filtered-desired force curve which lie above this line will

cause the controller to increase the force applied to the environment, because the

desired force will be larger than the actual force readings. The sections of the curve

which are below the equilibrium line will cause the controller to decrease the force

applied to the environment because the desired force will be less than the actual

force measurements.

The corner points of the filtered-desired force curve should be chosen so that

the transition (from non-contact desired force to the in-contact desired force) is

above the equilibrium line. This will allow the controller to achieve the final in-

contact desired force, by making the in-contact desired force an equilibrium point.

The filtered-desired force curve which was used in the experiments shown in Chap-

ter 6 is depicted in Figure 7.3. Note that the transition in the curve lies above the

line of equilibrium. It crosses the equilibrium line at (10,10); thus, the equilibrium

point which the controller will try to achieve is a force of 10 Newtons.

Figure 7.3 also shows an example of a poor filtered-desired force relationship.

Note that one of the corner points of the curve was chosen below the equilibrium

line, so that the curve actually crosses the equilibrium line at around 5 Newtons. In

this case, 10 Newtons is not a stable equilibrium point; the force will tend to settle

around the equilibrium point of 5 Newtons.

Figure 7.4 shows the performance of the DFS algorithm using this relationship.

Notice that the desired force changes from 1 Newton to 10 Newtons initially (due

to the impact force), and then gradually decreases to 5 Newtons. The actual force

follows; as predicted, the resulting steady state force value is 5 Newtons.

The slope of the transition should be chosen based on how fast the desired force

should change from one level to the other after contact is made with the surface. If

a slower change is desired, a more gradual slope can be specified.

106

g

10

/

Relationship Between Piltc'w,d and Desired Force
j , , ,

Example of Poor Relationship
.......RelationshipUsed InExperiments

' DividingLine ,.

i , i i i I,4 6 8 I0 12
, h L

0 0 14

Filtered Force (N)

Figure 7.3: Relationship Between Filtered and Desired Force Must be Chosen Care-

fully

g

25

2O

15

I0

5

0

-$

-10

-15
0

DF$ Experiment o_ Wood With Variable De__,d Force: KI = 20, alpha = 0.9

....,'

,..:

.J

..j

Actual Force (N)
....... Dcsm:d Force (N)
............. F Signal (N)

\

, , h , I , ,

0.5 i 115

Time (scc)

Figure 7.4: Effect of Poor Relationship Between Filtered and Desired Force

107

In addition to being placed above the line of equilibrium, the lower corner

point of the filtered-desired force curve has another constraint. The filtered-force

coordinate of this corner point should be chosen above the noise level of the force

sensor. This helps to prevent the desired force from changing until the robot has

actually contacted the environment. For example, the force sensor used in the

experiments provided readings which would fluctuate by an amount less than 0.2

Newtons. The lower corner point of the filtered-desired force curve was set at

(0.2, 1.0); this meant that sensor noise would not cause the desired force to increase.

After the gripper contacted the environment, the measured force was no longer zero.

The filtered force then increased, causing the desired force to increase as well.

The filter coefficient a trades off between noise rejection and sensitivity to fast

changes in the force measurements. This parameter also helps to prevent noise from

altering the desired force before the gripper contacts the environment. Tuning this

parameter should be done by considering the noise in the system and how fast the

forces are likely to change (given disturbances, etc.). For many of the experiments

which were performed, a value of a = 0.9 was found to provide reasonable noise

rejection, while still allowing the controller to alter the desired force quickly in the

presence of a disturbance.

7.2.2.3 Force Signal Clipping and Integral Windup Prevention

This modification to the DFS algorithm worked by limiting two different con-

trol signals; the integral error and the force control signal (which was multiplied by

the transpose Jacobian).

Each signal that was clipped required two parameters in order to specify the

limits; the upper limit and the lower limit on the signal. Having the two limits

specified individually allowed the controller to apply a greater force in one direction

than the other. For simplicity, however, the magnitude of the upper and lower limits

108

wasset to be the same.For example,if the upper limit of asignalwas+2, the lower

limit wasset to -2.

A numberof problemsmaybeencounteredwith theseparameters.If the robot

arm hasany joint friction and the limit of F is set too low, the arm may not move,

although the integral error will wind up completely. Another possible occurrence is

that the gripper is able to contact the surface, but is unable to achieve the desired

force. In both cases, the controller cannot output a signal large enough to overcome

joint friction and achieve the desired force.

For the experiments which were run, the limit for the force signal F was set

roughly 2-3 times larger than the desired force value. This allowed the controller to

put out enough torque to overcome joint friction and achieve the desired force.

The limit on the integral error also must be set. If this limit is set too low,

the maximum F signal (determined by the limits on F) may never be achieved. If

the limit is set too high, the integrator will be able to wind up too far.

To determine the limits on the integral error, the limits of F were used, along

with the value of KI. As a starting point, the integral error was limited to a

value which would generate an unclipped F signal twice the value of the limited F

signal. This was done to allow the integrator to wind up, giving the controller some

"memory", without allowing it to wind up too far. As an example, if I(_ = 20.0,

and the limits on F were -t-20.0 N, then the integral error limits would be set at

+2.0.

7.3 Qualitative Comparison of Force Control Algorithms

In addition to exploring the effect of environmental flexibility, the experiments

discussed in Chapter 5 were also structured in such a way as to allow some qualitative

comparison of the two force control algorithms. For example, the robot was placed

in a similar configuration for all test runs. In addition, the sampling rates were

109

selected in such a way that both algorithms received new force information at the

same rate.

The PAC and the DFS algorithms are fundamentally different; they a'pproach

the force control problem in different ways. The Position Accommodation algorithm

is an indirect method of force control. This means that the forces applied to the en-

vironment are controlled by controlling the position of the end-effector of the robot.

In contrast to this approach, the Direct Force Servoing algorithm is a direct method

of force control; forces applied to the environment are controlled by specifying the

motor torques applied to the joints of the robot.

The PAC algorithm is a higher-level force control, being located in the trajec-

tory generator. Because of this, the algorithm must be run at the servo rate of the

trajectory generator. This is typically an order of magnitude slower than the joint

controller rate. In addition, the PAC algorithm depends upon the lower-level joint

controller to handle the dynamics of the robot arm. The actual mass of the robot

is ignored by the force control algorithm; instead the end-effector is made to mimic

the dynamics of a simple mass-spring-damper system. It has been shown experi-

mentally that the choice of the underlying joint controller can drastically affect the

performance of the joint controller [20].

In comparison, the DFS algorithm is a lower-level approach to the force con-

trol problem. Because it is located in the joint controller of the robot, it has no

lower control layer to depend on. Because it runs at the controller servo rate, it is

reasonable to expect that the DFS algorithm would be more responsive than the

PAC algorithm in typical robotic systems.

Because of the locations of the algorithms in the robot control architecture, the

PAC algorithm is inherently better suited for industrial controllers. Such controllers

are typically position-based, and it is relatively easy to build a trajectory generator

to supply the position controller with setpoints. The DFS algorithm, on the other

110

hand, requires a specialized joint controller that can handle force measurements.

Another major difference between the algorithms presented here is that the

Position Accommodation algorithm moves the end-effector in Cartesian space. This

is easy for users to visualize, and can help when attempting to tune the controller

to apply forces to objects in the workspace of the robot. The Direct Force algo-

rithm, as implemented here, does not move the gripper in straight lines in Cartesian

space. This is a relatively unattractive feature of this control method. However, the

algorithm can be modified in order to correct this problem, by adding a Cartesian

motion controller. Equation (4.1) would be altered to become:

r = JT(Fjorce + Fpo_) + _(0) (7.1)

In the above equation, Florce is the force control signal due to the force error mea-

sured at the end-effector. Thus it is the same as F, used elsewhere in this document.

Fpos is the force control signal due to the Cartesian position error of the end-effector,

and would be generated using a PD or PID feedback control law. Typically, the grip-

per position would be controlled along some Cartesian axes, while forces applied by

the gripper would be controlled along the remaining axes.

Still another difference between the algorithms is exhibited by their behaviour

around robot singularities. As discussed in Chapter 3, the PAC algorithm has

severe difficulties with robot singularities, due to its use of inverse kinematics. Near

the singular points of the robot, small Cartesian motions may result in large joint

motions.

In contrast to the behaviour of the PAC algorithm, the DFS algorithm is very

well behaved near singular points. This is because the heart of the DFS algorithm

lies in the use of the transpose Jacobian. At singular points, the Jacobian matrix

will become singular, but the implication of this is only that the robot can no longer

exert forces in the degree of freedom that was lost. No large joint motions will occur,

III

even though the robot loses a degree of freedom.

PAC

• indirect method

• Cartesian space

• located in trajectory generator

• depends on underlying controller

• good for industrial controllers

• problem with singularities

DFS

• direct method

• not Cartesian space

• located in joint controller

• no underlying joint controller

• need specialized controller

• little problem with singularities

Table 7.1: Summary of Comparison of PAC and DFS algorithms

Table 7.1 summarizes the comparison between the different force algorithms.

The key comparisons that have been presented in this section have been highlighted.

7.4 Summary

This chapter discussed a rough tuning procedure for both the PAC and DFS

force control algorithms. Tuning the PAC algorithm mainly consisted of adjusting

the damping parameter. The basic DFS algorithm only required adjustment of

the integral gain; however, the addition of the improvements to the DFS algorithm

added extra complexity to the tuning process.

A qualitative comparison of both algorithms was also presented and discussed

in this chapter. Because the two algorithms are fundamentally different, there are

a number of contrasts between them.

CHAPTER 8

Conclusions and Future Research

8.1 Summary and Conclusions

This report presented the theory and implementation of two different types of

force control algorithms. These algorithms were tested on several different surfaces

to determine the effect of environmental flexibility on the stability of the control

algorithms. The experimental results from these experiments have been presented

and discussed. Suggestions for improving the DFS algorithm were also presented,

and verified with experimental results. Finally, a suggested tuning process for each

control algorithm was provided.

A number of things can be concluded from the results presented in this report.

• The flexibility of the environment has a significant impact on the stability of

the force control algorithm. A force control algorithm must take into account

the type of surface being contacted.

• Force spikes due to impact are a problem which a force control algorithm must

be able to deal with.

• Integral force control is better than proportional force control for achieving a

desired force. Integral control has zero steady-state error for constant desired

force setpoints, and is more robust than proportional force control.

• Increasing the integral gains (higher Kz for DFS, lower damping for PAC)

improves the response time of the control algorithm, but also increases the

impact forces which occur when the robot contacts the environment.

• Direct integral force control is not robust with respect to disturbances. How-

ever, modifications to the basic algorithm can be made which improve the

112

113

robustness of the algorithm. These modifications increase the complexity of

the tuning process.

8.2 Future Research

The experimental results presented in this report have shown several areas in

which more research is necessary. These topics are discussed below.

8.2.1 Friction Identification and Compensation

The robot arms at CIRSSE have significant static and viscous friction. It

is known that static friction causes limit cycles when a PID algorithm is used to

control joint positions. This phenomenon is easy to recognize: the robot joints

will oscillate slowly about their setpoints. This is caused by friction in the joints

preventing the motion of the joint when there is a slight error in the location of the

joint position. The integrator in the PID control winds up, and when the output

torque from the controller is sufficient to overcome friction and move the joint, the

joint overshoots the desired setpoint. The process then repeats, in reverse. The

result is a slow, small-amplitude oscillation about the setpoint. PD control also has

problems with friction. In this case, friction prevents the joint from ever reaching

the desired setpoint.

In order to improve the positioning capability of the joint controllers, it is

desirable to be able to compensate for friction in some way. One avenue of research

is to estimate the friction parameters of each of the robot arm joints. The parameters

would include static, viscous, and Coulomb friction. Once the parameters have been

estimated, it should be straightforward to adjust the control torques to compensate

for the friction parameters.

Another possibility is to implement an adaptive friction compensation algo-

rithm. Such an algorithm would adjust the friction compensation torque in real-time

114

in order to counteract the effects of friction. For such an algorithm, it might not be

necessary to explicitly estimate the friction parameters of the arm joints.

8.2.2 Estimation of Environmental Flexibility

The range of control gains for which the robot-environment system remained

stable depended upon the flexibility of the surface being contacted. This result

highlights the need to be able to estimate the environmental flexibility of the en-

vironment. If a robotic system can estimate the flexibility of the environment, the

force control gains could then be adjusted automatically to perform better for that

surface.

8.2.3 Cartesian Motion and DFS

The DFS method outlined in this report is not a Cartesian-space controller.

(Refer to Section 4.1.2.) A near-term research goal is to build a Cartesian controller

which uses a similar jr approach. One advantage to such a controller is that the

task space is easier for the user to visualize. It is also much easier to build a hybrid

force and position control system when working in Cartesian space.

8.2.4 Hybrid Force and Position Control

Hybrid force and position control is an important issue related to Cartesian

DFS control. Hybrid control allows the robot to control forces in some directions,

and positions in others.

Such a control capability is very important if a robot is to perform meaningful

tasks. If the robot were to write something on a blackboard, for example, it must

control the force applied to the blackboard, or the chalk may break. However, it

must also control the position of the chalk in the directions parallel to the surface

of the blackboard.

IL5

8.2.5 Active biasing of force sensor

One of the built-in functions of the Lord force sensor is that of force sensor

"biasing". Essentially, it is a zeroing out of the current force readings." Every

subsequent force reading is then modified by having the bias reading subtracted

fl-om it. This functionality is very useful; if the robot is holding a 5 Newton weight

in its gripper, for example, it may be convenient to consider the 5 Newton force the

"zero force" reading.

The biasing fnnction of the Lord sensor has a severe limitation, however. The

biasing only works if the sensor is not rotated about an axis perpendicular to the

direction of gravity. Thus, if the sensor is rotated about any horizontal axis, the

sensor will register forces due to its own weight (and the weight of the gripper). If

the force sensor is rotated about a vertical axis, no change to the biasing will take

place.

An interesting avenue of research is in "active biasing" of the force sensor. In

this case, several force measurements are taken, with the force sensor in different

orientations. The biasing code would then use these force readings as reference

points in order to bias all subsequent force readings properly, regardless of the

orientation of the force sensor. It should be noted that the biasing code would need

to be supplied with the orientation of the sensor in order to function correctly.

8.2.6 Velocity observer

The interface to the PUMAs at CIRSSE has a severe limitation in that only

position values can be read from the Unimate Controllers. Since PID and PD control

require the velocity value as well, it is necessary to either estimate the velocity with

an observer, or to take the derivative of the position signal.

Currently, a derivative method is employed in the software-based joint con-

trollers. Since this method is inherently noisy, a filter must be used to help smooth

° "

116

out the velocity signal. The resulting signal is still noisy, and is not the true veloc-

ity of the joints. Additionally, there is a tradeoff which must be considered; as the

bandwidth of the filter is lowered, the filter pole interferes more with the c3ntroller

poles. While tuning the joint controllers for the PUMA, it was necessary to consider

the filter as a part of the controller, increasing the complexity of the pole placement

process.

The alternative method of using a velocity observer seems more promising.

The observer is expected to produce smoother and more accurate velocity signals,

without the need for filtering. This should result in better arm control and an easier

tuning process.

8.2.7 Two Arm Force Control

The work presented here lays the groundwork for research in two-arm control.

The CIRSSE testbed consists of two 9 DOF arms like the one shown in Figures 2.3

and 2.4. Preliminary two-arm control has already been achieved at CIRSSE [20].

There are a number of difficulties in two-arm control; both arms must comply to

each other as well as to external forces. As with single-arm control, the arms must

also come into contact with the environment in order to perform useful tasks. It is

expected that the work presented here will be directly applicable to this research.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

LITERATURE CITED

D. Whitney, "Historical perspective and state of the art in robot force

control," International Journal of Robotic Research, col. 6, no. 1, pp. 3-14,
1987.

N. Hogan, "Impedance control: An approach to manipulation, parts I-III," in

ASME Journal on Dynamic Systems, Measurement and Control, vol. 107,

pp. 1-24, Mar. 1987.

M. Raibert and J. Craig, "Hybrid position/force control of manipulators,"

ASME Journal on Dynamic Systems, Measurement and Control, col. 102,

pp. 126-133, June 1981.

O. Khatib and J. Burdick, "Motion and force control of robot manipulators,"

in Proc. 1986 IEEE Conference on Robotics and Automation, (San Francisco,

CA), pp. 1381-1386, Mar. 1986.

C. An and J. Hollerbach, "Dynamic stability issues in force control of

manipulators," in Proc. 1987 IEEE Conference on Robotics and Automation,

pp. 890-896, 1987.

D. Wedel and G. Saridis, "An experiment in hybrid position/force control a

six DOF revolute manipulator," in Proc. 1988 IEEE Conference on Robotics

and Automation, (Philadelphia, PA), pp. 1638-1642, 1988.

J. Wen and S. Murphy, "Robot force control in the presence of environmental

flexibilities," in Sixth Yale Workshop on Adaptive and Learning Systems,

(New Haven, CT), pp. 225-230, Aug. 1990.

J. Wen and S. Murphy, "Stability analysis of position and force control for

robotic arms," IEEE Transaction on Automatic Control, col. 36, pp. 365-371.
Mar. 1991.

R. Volpe, Real and Artificial Forces in the Control of Manipulators: Theory

and Experiments. PhD thesis, Carnegie Mellon University, 1990.

R. Volpe and P. Khosla, "Experimental verification of a strategy for impact

control," in Proc. 1991 IEEE International Conference on Robotics and

Automation, (Sacramento, CA), pp. 1854-1860, Apr. 1991.

R. Volpe and P. Khosla, "An experimental evaluation and comparison of

explicit force control strategies for robotic manipulators," in Proc. I992

American Control Conference, (Chicago, IL), pp. 758-764, 1992.

117

I18

[12] J. F. Watson, III, "Testbed kinematic frames and routines," CIRSSE

Technical Memorandum 1 (v. 2), Rensselaer Polytechnic Institute, Troy, NY,

August 1991.

[13] J. J. Craig, Introduction to Robotics, Mechanics &' Control. Reading, Mass.:

Addison-Wesley, 1986.

[14]

[15]

[16]

[17]

[is]

[19]

[2o]

[21]

[22]

[23]

[24]

[25]

Lord Corporation (Industrial Automation Division), CaW, NC, Installation

and Operations Manual for F/T Series Force/Torque Sensing Systems,

revision 3.1 ed., November 1987.

Wind River Systems, Incorporated, Alameda, CA, VxWorks Programmers's

Guide, 1990.

K. R. Fieldhouse, K. Holt, D. R. Lefebvre, S. H. Murphy, D. Swift, and J. F.

Watson, III, "Lecture materials for tile CTOS/MCS introductory course,"

CIRSSE Report 97, Rensselaer Polytechnic Institute, Troy, NY, August 1991.

B. C. Kuo, Automatic Control Systems. Englewood Cliffs, New Jersey:

Prentice-Hall, Inc., fifth ed., 1987.

L. S. Wilfinger, "7 DOF gravity compensation for the testbed arms," CIRSSE

Technical Memorandum 15 (v. 1), Rensselaer Polytechnic Institute, Troy, NY,

February 1992.

K. Holt and L. Wilfinger, "Jacobian library for the testbed arms," CIRSSE

Technical Memorandum 17 (v. 1), Rensselaer Polytechnic Institute, Troy, NY,

July 1992.

M. Ryan, S. Murphy, and J. Wen, "Force regulation in multiple manipulator

systems," in Fourth Annual CIRSSE Conference, (Troy, NY), Oct. 1992.

D. Sood, "Kinematics and jacobian of the platform and the robot." Internal

communication, 1992.

A. Fijany and A. Bejczy, "Efficient jacobian inversion for the control of simple

robot manipulators," engineering memorandum, Jet Propulsion Laboratory,

April 1988.

B. Armstrong, O. Khatib, and J. Burdick, "The explicit dynamic model and

inertial parameters of the PUMA 560 arm," in Proc. 1986 IEEE Conference

on Robotics and Automation, (San Francisco, CA), pp. 510-518, Mar. 1986.

M. Leahy, L. Nugent, and G. Saridis, "Efficient PUMA manipulator jacobian

calculation and inversion," Journal on Robotic Systems, 1987.

C.-J. Li, A. Hemani, and T. Sankar, "An efficient computational method of

the jacobian for robot manipulators," Robotica, vol. 9, pp. 231-234. 1991.

[19

[26] S. Murphy and D. Swift, "Dynamic parametersand inversedynamicsfor the
PUMA 560," CIRSSETechnicalMemorandum13(v. 1), Rensselaer
Polytechnic Institute, Troy, NY, January 1992.

,r

[27] T. J. Tam, A. K. Bejczy, H. Shuotiao, and X. Yun, "Inertia parameters of

PUMA 560 robot arm," Robotics Laboratory Report SSM-RL-85-01,

Department of Systems Science and Mathematics, Washington University,

September 1985.

[28] D. Swift, "Kinematic and dynamic parameters for the testbed grippers and

loads," CIRSSE Technical Memorandum 14 (v. 1), Rensselaer Polytechnic

Institute, Troy, NY, January 1992.

APPENDIX A

Derivation of Gravity Compensation Equations

This section discussesthe derivation of the gravity compensationequationsfor the

PUMA arms as they are mounted on the CIRSSEtestbed. Becauseof the extra

degreesof fi'eedomthat the CIRSSEtestbed possesses,the equationspresentedin

workssuchas [23]wereinadequate.

A.1 Notation and Conventions

The notation in this chapter is consistentwith that outlined in Chapter 1. In

addition, there are a number of other conventionswhich are usedin this chapter.

For completeness,the relevantconventionsaresummarizedbelow.

• The coordinateframesof the CIRSSEtestbedarm are labeled1 - 9; frame 0

is the global origin (see[12]). An E denotes the end-effector frame.

• Due to the design of the CIRSSE testbed arm, the joints of the PUMA are

labeled 4 - 9. The subscript labels of parameters reflect this labeling as well.

Thus, link 6 of the PUMA is considered link 9 of the arm, and the mass of

this link would me labeled rng.

• k9 is the vector which describes the acceleration due to gravity, expressed in

the coordinates of frame k. When g is expressed in frame 0, the prescript will

be dropped.

[0g=g= 0 0 -9.8062 s2

• Estimated values will be specified with a hat symbol over it. Thus, an estimate

of the acceleration due to gravity would be designated as _, while the actual

value would be specified as g.

120

12t

k
• - 7"/ is the 3-vector describing the link torque (due to gravity) felt at joint i,

expressed in the coordinates of frame k. kri is the link torque applied to the

joint by the motor.

kri, j is the vector describing the position of the center of mass of link j with

respect to frame i, and expressed in the coordinates of frame k.

kri, j = [kri,j(X) kri,j(Y) kri,j(Z)]

Note that under many circumstances, k = i. In this case, the i subscript may

be dropped; thus k krk,j = rj.

kpi,j is the 3 x 1 vector describing the position of frame j with respect to frame

i, expressed in the coordinates of frame k. Under many circumstances, k = i.

In this case, the i subscript will be dropped; thus, kpk,j = kpj. Note also that

k k
Pi,j =- Pj,i.

• jR is the 3 x 3 rotation matrix describing the orientation of frame j with

respect to frame i.

•)T is the 4 x 4 homogeneous transformation describing the position and ori-

entation of frame j with respect to frame i. Thus:

[]i jR 'pj

iT= 0 1

• ki_i,j is the 3 x 3 cross product matrix associated with the vector kPi,j , expressed

in the coordinates of frame k:

0 --kpi,j(Z) kpi,j(y)

0

__kp ,s(U) 0

1'2"2

The arguments x, y, and z in the above matrix represent the three components

of the vector kpi,j. The term "cross product matrix" indicates that for any

3 x 1 vector kw, the following equation holds:

k_ k k k
Pi,j to = Pi,j X tv

It should be noted that the following equation also holds for cross product

matrices: _R k~Pi,j p R J= Pid

k2. ,,j is the velocity of frame j with respect to frame i, expressed in the coor-

dinates of frame k. This is a 6 x 1 vector; the first three components of this

vector are the linear velocity and the last three are the angular velocity:

Note that under many circumstances, k = i. In this case, the i subscript will

• . /g •

be dropped; thus kxk,j = zj.

kJi, j is the Jacobian relating joint velocities of the robot to the velocity of

frame j with respect to frame i. This relative velocity is expressed in the

coordinates of frame k. Frame j will be referred to as the "velocity frame"

since the joint velocities are mapped to the velocity of frame j. Frame i will be

called the "velocity reference frame" (or "reference frame") since the velocity

of frame j is measured with respect to frame i. Frame k will be referred to as

the "coordinate frame."

• Trigonometric functions may be abbreviated by their first letter; therefore

Ci = cos0i, and & = sin0i. Note that Cij = cos(0/+ Oj).

123

A.2 High Level Equations

The calculation of the gravity compensation equations presented here was done

by starting at the highest numbered links and working backwards. This was done

because the weight of the upper links affects the torque felt at the joints of the lower

links.

framo "' "'-';/.;';'/

, :..:.,,,,._

,'K2/ r..
, mgg

I i

, , link 8 frame 9
/ j

/ I

/ t

• I

/

J

, m,g
t

Figure A.I" Last Two Links of Robot Arm

Figure A.1 shows a representation of links 8 and 9 of the robot arm. The

equation for the torque applied to joint 9, due to the mass of link 9 is:

--3" 9 -- r9, 9 X m9g

Expressed in frame 0, we have:

0T9 _- 0 0 9-- rg, 9 X mgg ----- 9 R 7"9, 9 X m9g

The torque on joint 8 is due to the weights of both link 8 and link 9. Thus:

(A.1)

°T 8 = °rs, 8 x rrt8g -t- o-- r8, 9 X m9g

124

link 9

link

flame 8
: link 8

flame 9
m,g

m g

Figure A.2: Last Three Links of Robot Arm

Note that o 0 8 8R9 r ,,r8,9 = 8 R (Ps,9 + 9 9,9)" Substituting this into the above equation

and expanding, we obtain:

__ 0 8 0 8 0 9°rs = s R rs,s x msg + s R Ps,9 X m9g -b 9R r9,9 x m9g

0 8 0 8 0
- ors = s R rs,s x msg + s R Ps,9 × m9g -- r9 (A.2)

See Figure A.2. This diagram shows that the torque on joint 7 is due to the weight

of links 7, 8 and 9. The equation is:

o o
-- 7"7 = r7,7 x mzg + °rr,s x msg + °r7,9 X m9g

Expanding as before, and substituting terms, we obtain:

0 7 0 7 0
°r7=TR r7,7×mTg+7R pv,sX(ms+mg)9- rs (A.3)

This procedure can be performed for all of the arm joints. For the upper six joints

(the PUMA arm) the torque equations are:

0 9
-- 0T9 --" 9 _ r9, 9 X rn9g

0 8 0 8 0
- ors = s R rs,s x msg + s R Ps,9 × m9g - "/'9

0 7 0 7 0
--°7r = 7R rr,r x mTg+TR Pr,s x (ms+m9)g- r8

0 6 0 6 0
--0V6 = 6 R r6,6 × m6g + 6R P6,7 × (mr + ms + m9)g - rT

0 5 0 5 0
--OT5 = 5 R rs,s × msg + s R P5,6 ×(ms+mr+ms+rag)g- r6

0 4 0 4 0
--°74 = 4 R r4,4 × m4g + 4 R P4,5 × (m_ + rn6 + mr + ms + m9)g - r5

(A.4)

The equations in (A.4) define the link torques caused by gravity on the joints.

To compensate for this torque, an opposing torque must be applied to the link by the

joint motors. By negating the equations, the equations for the link compensation

torques are obtained.

These 6 equations are vector equations which describe the torque on each of

the joints, expressed in the coordinates of frame 0. Each vector equation can be

separated into 3 equations (one for each of the X,Y, and Z components of the

vector). By expressing each torque r_ in the ita frame, the expressions for the torque

vectors can be simplified. This is because the Z axis of the i th frame is attached to

the i *h link of the robot, and coincident with the i th joint axis [13]. Since the i th

joint can only move about the i th frame's Z axis, the only component of the vector

i'ri that is of concern is the Z component.

Negating the equations, and applying the appropriate rotation matrices to

(A.4), we obtain:

9nrO r_9
9r9 = ogR°r9 = -0_bte r9,9 x mgg]

8 nrO r._8 0 8 0
sr8 = SoR°rs= -0atsn rs,sXmsg+s R Ps,gxmgg- Tg]

7 0 7 0 7 0 7rrr o R rr = -oR[TR rr,r x mrg + rR Pr,s x (ms + mg)g - °Ts]

(A.5)

126

-_ 6 0 6 r,,rO n6 0 66r6 0 R T6 -- --0/ll6/_ r6,6 × m6g + 6 R P6,7 × (m7 + ms + m9)g - °rT]

-.- 5 0 5 r_rO r-_5 0 5sr5 o R rs - -orqsa r5,5 × msg + sR P5,6 × (m6 + m7 + ms + m9)g -- °r61

--._ 4 0 4 r_r0 r_4 0 44r 4 o R 7"4 = --0/1[4/_ r4,4 ×m4g+4R p4,5 x (ms+m6+mr+rns+m9)g- °rs]

Finally, by expanding the equations and simplifying we obtain:

9 9
9r9 = -[r9,9 x mgoRg] (A.6)

s s s SRg s 9Srs = -[rs,s × msoRg+ Ps,9 × rngo --9 R rg]

77.7 _ _[7 7 7 7 7 8F7,7 X mToRg+ P7,8 X (ms+m9)oRg--8R r8]

6 6 6 6 6 7
6r6 = -[r6,6 x m60Rg + P6,7 × (m7 -b rns -_ mg)oR9 - rR r7]

5T5 __[5 5 5 5 5 6= rs,_XmsoRg+ Ps,6X(ma+mr+rns+mg)oRg-6R r6]

4 4 4 5

The above equations (A.6) are the gravity compensation equations for the

PUMA. The equations determine the (link) torques which must be applied by the

motors in order to compensate for gravity.

A.3 Scalar Form of Gravity Compensation Equations

With the high level equations defined, we can now find the scalar equations for

gravity compensation. From [13] we know that the general form of a homogeneous

transformation describing the position and orientation of the i th frame with respect

to the i - I th frame is:

cos Oi - sin Oi 0 ai-1

sinOi cos ai__ cos Oi cos c_i-x - sin oi-t -sinc_i_ldi
!-'T =

sin Oisin ai-_ cos 0i sin ai-1 cos ai-1 coscti-1 di

0 0 0 1

The modified Denavit-Hartenberg parameters for the testbed can be found

in [12]. With this information, we can build all of the needed homogeneous trans-

formations. Substituting these transforms into equations (A.6), we obtain 6 vector

127

equations,where eachvector has3 components,for a total of 18equations. How-

ever, since all of the torque vectorsare expressedin their link frame coordinates,

only the Z component of each vector equation is of interest.

Arm

Right Arm

Link mass

Number, i (kg)

Link 4 12.95

Link 5 17.40

Link 6 4.80

Link 7 0.82

Link 8 0.34

Link 9 0.09

(m) (m) !m)

0.0 0.0389 &13088

0.068 0.006 -0.016

0.0 -0.070 0.014

0.0 0.0 -0.019

0.0 0.0 0.0

0.0 0.0 0.032

Table A.I: Masses and Centers of Gravity of the PUMA Arm Links

These 6 equations are the scalar gravity compensation equations. They are

not shown here due to their length. In order to simplify the equations, we can

eliminate those terms which are zero. The masses of the arm links and the centers

of gravity of the links were obtained from [23, 26, 27]. After eliminating zero terms

and simplifying, we obtain the following equations:

9 ro = o (A.7)

8 _s = cd _,(c_ss + s_6c_c_)] sdK,(s_s_c_ - c_c._c_cs + c_s_s_)]

7

6

5
r5 = Ca[K_(CsaC, S8 + SsaG) - K2Cs6 + KaSsa - IQCs + KsSs] +

$3[I(1(C465668 - 64S56C7S8) AC I(264S56 + I<3C4656 "31"C4(t4S5 "JU /k'5C5)]

4
1"4 -- -S3[S4(KI(CsaCTSs -1-$56Cs) - I(2656 -t- K3S56 - K4Cs -t-/(sSs) +

The constants K1 - K6 are defined as follows:

I£1 = -rn99r9,9(z)g

K2 = (mr + ms + m9)a6g

I(5 = rn.5Srs,s(g)g

t¢_ = (ms,_,_+ (m_+ m_+ ms + m_)(a_+ _) +

(_y.,.(y) + _s%,_(:) + _%,_(=)))_

.. (A.S)

Equations (A.7) and (A.8) are the gravity compensation equations for the

PUMA arms on the testbed. No terms have been discarded. It should be reiterated

that these equations produce joint torques; it is necessary to scale the torques re-

sulting from these equations by the gear ratios for the PUMA in order to determine

the correct motor torques to be sent out to the Unimate controller.

A.4 Gripper and Load

The equations in the previous section calculate the compensation torque for

the PUMA only; no provision is made for having a gripper attached to the end of

the arm, or for a load being carried in the gripper.

However, the gripper (and any load in the gripper) can be modeled by an

increase in mass of link 9 of the arm, along with a change in the center of gravity

of link 9. Given the following terms:

• mass of link 9, m9

• gripper mass, mgrivw,.

• load mass, reload

[')!)

* Z component of 9r9,9, 9r9,9(z)

• distance fi'om Dame 9 to the flange surface in Z direction, 9p9,](Z)

• center of gravity of the gripper in the Z direction with respect to the flange,

9ri,g ipp (z)

• center of gravity of the load in the Z direction with respect to the flange,

9r f ,load(Z)

the mass and center of gravity of the augmented link 9 is calculated as follows.

I

m 9 = m9 + mg_ippeT + rnlo_d (A.9)

9 i

=

+ + + +
m9 q- mgripper nt- reload

(A.10)

Note that all of the distance terms in the above equations are expressed in the

coordinates of frame 9. The parameters for the grippers mounted on the testbed

arms can be found in [28].

A.5 Comparison With Other Work

Armstrong, et. al. [23] presents a set of equations for the dynamics of the

PUMA arm. However, these equations assume a level PUMA. This assumption is

inappropriate for the PUMAs of the CIRSSE testbed; the equations presented here

allow for the PUMA to be tilted about a single axis. Thus, the equations derived

here work well for the PUMAs as they are mounted on the platforms presently; they

do not allow for the PUMA base to be tilted arbitrarily.

It should also be noted that by simplifying equations (A.6) to obtain (A.T),

some limitations were introduced. By substituting 0 in for the terms 9r9.9(x) and

130

9r9,9(y), for example, the equations were greatly simplified, but at the expense of

requiring that the center of gravity of the gripper (and of the load) be along the Z

axis of frame 9. The equations given in [23] also have this limitation.

It can be easily shown that the equations in [2:3] are a simple case of the

equations presented here. It should be noted that the first two joints of the 9 DOF

robot arm have no effect on the gravity compensation equations. This is intuitive,

given the geometry of the testbed arms; joint 1 is a level translational joint, and

joint 2 is a rotational joint which turns about an axis parallel to the gravity vector.

If 03 = 0, then sin 03 = 0, cos 03 = 1, and equations (A.7) and (A.8) become:

8
r8 =

5
=

I(1 = --m99r9,9(z)g

K2 = (m7 -t- m8 nt- m9)a6g

K3 = (m6u6- m,'r,,,(:) - (m, + m8 + mg)dT)g

Ks = msSr5,s(g)9

These equations and constants are identical with those given in [23].

that K6 is not needed in this case.

(A.12)

Note

APPENDIX B

Derivation of Computationally Efficient PUMA Jacobian Equations

B.1 Notation and Conventions

The notation in this chapter is consistent with that outlined in Chapter 1

and Appendix A. The reader is directed to these chapters for a summary of the

conventions.

B.2 Background

The Jacobian matrix (or Jacobian) is a mapping between joint space and

task (Cartesian) space. It maps joint velocities to Cartesian velocities (linear and

angular) according to the following relationship:

= J_ (B.1)

where & is a 6 x 1 vector of Cartesian velocities, J is a 6 x n matrix, and r_ is a n x i

vector of joint velocities. (For the PUMA, n = 6.)

It can be shown that the transpose of the Jacobian maps the forces applied to

the end-effector into joint torques [19]. The relationship is expressed below:

r = jTf (B.2)

where f is a 6 x 1 vector of forces and torques in Cartesian space and r is a n x [

vector of torques, one for each joint of the robot arm.

As mentioned in the Notation section of this document, the Jacobian has

several frames related to it. For example, kJi, j is the Jacobian relating the joint

velocities of the robot arm to the Cartesian velocity of frame j with respect to)

131

132

frame i, and expressed in the coordinates of flame k. Frames i, j, and k are referred

to as the velocity, reference, and coordinate frames, respectively.

B.3 Velocity and Coordinate Frame Transformations

B.3.1 Velocity Frames

The velocity frame of the Jacobian can be changed throngh the following

transformation:

I I -kPJ,t] k
kJi,t = Ji,j

0 I

Note that in the above equation, the coordinate frames i and k are arbitrary and

not affected.

A special case of this transformation is analogous to the kinematic concept of

a tool transform. Given the Jacobian which maps to the velocity, of frame 9 of the

robot arm (Ja,9 for the PUMA), and the position vector 9p9,, (obtained from the

9Ttool transform E), the Jacobian which maps to the end-effector velocity (Ja z) can

be found.

B.3.2 Coordinate Frames

In addition to velocity frame modifications, coordinate frame transformations

can also be accomplished, via the following expression:

Combining both of these transformations, we have the following equation:

:ROI

133

B.3.3 Use of Transformations

Finding the Jacobian and its inverse with respect to any arbitrary coordinate

frame can be computationally expensive. However, it is possible to take advantage

of coordinate frame transformations to find the Jacobian matrix that has the the

simplest form [22]. For PUMA arms, the Jacobian matrix is simplest when expressed

in frame 6. This matrix is displayed below:

6j3, 9

-(d.5 + d6)Cs6 dr + asSa d7 0 0 0

(ds + d6)$56 a6 + asCs a6 0 0 0

asCs + a6C56 + dzSs6 0 0 0 0 0

-£s6 0 0 0 -$7 C.: Ss

-C56 0 0 -1 0 -Cs

0 1 1 0 C_ SrSs

(B.3)

matrix _J3,9:

i 0]3,9 --

D E

where B, D, and E are 3 x 3 submatrices of the PUMA Jacobian. Fijany and Bejczy

[22] have shown that this structure can be utilized to obtain efficient solutions to

equation (B.1). Instead of computing the Jacobian explicitly and then multiplying

the Jacobian by a vector, the result of multiplying the Jacobian by a vector is

computed directly. This strategy results in a significant computational savings.

Note also that the matrix in (B.3) is in lower block triangular form. This is

due to the geometry of spherical wrist arms; i.e., the fact that the origins of the last

three frames coincide. The following compact notation will be used to denote the

134

B.4 Forward Jacobian

The equation relating the joint velocities c_ to the Cartesian velocity of fi'ame

E, with respect to frame k is:

• kj •_x_ = 3,Eq (B.4)

Separating the linear and angular components, we can rewrite this equation in the

following matrix form:

= - p9,_ B 0 _)l

ka., 0 6kR 0 I D E 0_
(B S)

The vector 01 is a 3 x 1 vector consisting of the velocities of the first three joints of

the PUMA. Likewise, 02 contains the velocities of the last three joints of the PUMA.

Multiplying the matrices together, we obtain the following equations:

kJc, = 2RBill k,,a- D"- _ _ pg,_ q_ - 2R_Po,_E4 ,

k E"k = 2RDOl+6R q2

To simplify the equations (and to reduce the number of operations needed to com-

pute the solution), we order the equations as follows:

% = 2R(DO, + EO_)

kkL 2RBi h k s- kRS~ E"= -- 6R pg.EDO1 - 6 P9.z q2 (B.6)

B.4.1 Coordinate Frame k < 6:

When k <_ 6, equations (B.6) simplify easily:

k = 2R(DO, + E_t:)

k • 6_ •
kiCL = 6R(Bql- Po.E(Dqa + E¢2))

r

135

And in their final form, the equations for k _< 6 become:

s = D41 + E4_

kw = _ Rs

k._.L = 2R(B4I- 6_,E._) (B.7)

B.4.2 Coordinate Frame k > 6:

When k > 6, a different form of the equations can be found which require less

computation than the previous set. By using tim property of cross product matrices

(see Notation and Conventions) equations (B.6) become:

k •

k¢° = sR(Dql + Ei12)

k_L _RBih k~ k,-, D. k- k •-- -- PO,E6 t_ ql - Po _s REq2

Regrouping the terms in the equation for kkL, we obtain:

k •

k = s R(Dql + E(t2)

• k • k- k •
kx_ = aRBql - Po._sR(Dql + Egl2)

The final form of the equations, for the case when k > 6 is:

kw = 2R(D_h + Egt2)

• 2 k- kkx, = RBih- Po,E ": (B.8)

1.36

B.4.3 Without Tool Transform

When there is no tool transform, equations(B.6) and (B.8) simplify still fur-

ther, into a commonset of equations:

°

kw = 6 R(Dql + Eit_)

k:_L = 2RBOl (B.9)

B.5 Forward Jacobian Transpose

The equation relating the Cartesian forces felt at frame E (and expressed in

frame k) kf_, to the joint torques 7" is:

v = kjT3,E kf_ (B.10)

Separating the linear and angular portions of this equation, and rewriting in matrix

form results in:

r2 0 E T 6/)9,E I 0 k kfA
(B.11)

In the above equation, kfL is a 3 X 1 vector containing the linear components

of the force. _fa is also a 3 x 1 vectors, and contains the components of the torque.

Multiplying the matrices together, we obtain the following equations:

BT6Rk¢ D T6~ 6Rk-rl = k j_ + Pg,Ek JL + DT6Rk fA

ET6- 6,,k. ET2Rk fAr_ = Pg,Ek tt JL +

Regrouping terms, the equations become:

137

]_T6Rk f DT,6~ 6Rk ,. 6r, = k_ .IL + (Pg,E_ JL + kRk fA)

= E T, 6~ 6R k_.r2 t Pg,_k jL + :RkL)

B.5.1 Coordinate Frame k < 6:

When k _< 6, equations (B.12) simplify quickly to:

(B.12)

6~ 6Rk_ 6s = Pg,Ek J,.+kRkf_

_T6r, = kt_k fL + DT s

7"2 = ETs (B.13)

B.5.2 Coordinate Frame k > 6:

As with the Jacobian equations, when k > 6, a different form of the equa-

tions can be found which requires less computation. By using the property of cross

product matrices, equations (B.12) become:

BT6 _ DT6Rk'_ kr DT2Rk fa7"1 "-= kl_k fL + k P9,E Jc +

T2 ET6R k- k-- P9,E fL + ET:Rk fa

Regrouping terms results in the following:

r6 _ pg,_kf_ + _fA)"rl = B kR A + DT_R(k~

r_ ET_R(k~ k= _,E A + kL)

So the final form of the equations for the case when k > 6 is:

138

6 k_ k
s = kR(Pg,E IL + kfA)

__ DT6Rk _"rl *-" k dr. if- DTs

r2 = ET s (B.14)

B.5.3 Without Tool Transform

When there is no tool transform, equations (B.13) and (B.14) simplify into a

common set of equations:

6 k
S -= kR fA

T6
r, = B kRkfL + DTs

72 = ET s (B.I5)

APPENDIX C

Mass Matrix and Control Gains For the PUMA Joint Controller

This chapter presentssomeadditional information on the joint control layer of the

force control code describedin Chapter 2. In addition, the PID and PD feedback

gains for the controller are presented. Finally, the simplified massmatrix of the

PUMA which is usedin the joint controller is presented.

C.1 Notation and Conventions

The notation in this chapter is consistentwith that outlined in previouschap-

ters. The reader is directedto Appendix A for a summaryof the conventions.

C.2 Background

The joint controller which wasdescribedin Chapter 2 has severalmodesof

operation. Among thesemodes are the PID and PD modes,which require joint

velocity information.

Becauseof the designof the Unimate controllerunits, only joint position in-

formation canbeobtained. Velocity information is not readily available. [n order to

implement the PID or PD modesof the joint controller, it is necessaryto determine

the joint velocitiesin somemanner.

The method currently employedby the joint control layer is to usea simple-

differencingapproximation to obtain the velocity:

0[k]- 0[k - 1] (c.:J

where T_ is the sampling period, in seconds.

Because this operation is a discrete-time differentiation process, the resulting

139

140

velocity signal is very noisy. The velocity signal is then put into a discrete-time,

low-pass filter in order to eliminate some of the noise. To minimize lag in tile

velocity signal, only a first-order filter is used. The filter equation which is"used is:

bs;,[k]= <..,<;r.b[s<]+ Os,,[,- 1}
1.0 + _cT, (C'.2)

where Of lit is the filtered joint velocity signal, and ,_ is the desired (continuous-time)

cutoff frequency in units of radians/second. The filtered velocity signal is used in

the derivative term of the PID and PD feedback control laws.

C.3 PID Control Gains

Table C.1 lists the control gains and the desired filter cutoff frequencies for

the PID control mode. These gains are used any time that the joint controller is

in PID mode. During the force control experiments, prior to executing the force

control algorithms, the robot arm was positioned using PID mode.

Arm

Joint

4 210.9375

5 240.0

6 240.0

7 540.0

8 540.0

9 540.0

Proportional Integral Derivative Filter Cutoff Frequency,

Gain Gain Gain wc (rad/sec)

843.75

i024.0

1024.0

3456.0

3456.0

3456.0

18.9844

20.25

20.25

30.375

30.375

30.375

60.0

64.0

64.0

96.0

96.0

96.0

Table C.I: PID Control Gains and Filter Cutoff Frequency (Sampling Rate =

4.5 milliseconds)

C.4 PD Control Gains

Table C.2 lists the control gains and the desired filter cutoff frequencies for

the PD control mode. PD mode was used exclusively during the execution of the

PAC control algorithm.

Arm

Joint

4

5

6

7

8

9

Proportional Derivative Filter Cutoff

Gain Gain Frequency (rad/sec)

i08.0 54.b
108.0

108.0

432.0

432.0

432.0

16.0

16.0

16.0

32.0

32.0

32.0

54.0

54.0

108.0

108.0

108.0

Table C.2: PD Control Gains and Filter Cutoff Frequency (Sampling Rate = 4.5 mil-

liseconds)

C.5 Approximation of PUMA Mass Matrix

The mass matrix of the PUMA is configuration dependent. Because of this,

the performance of the joint controller will vary depending upon the configuration of

the robot. To reduce the configuration dependence°f joint controller when in PID

or PD modes, an estimate of the mass matrix is computed and used in the feedback

control law. This matrix is calculated every sampling period that the controller

executes (4.5 ms).

The estimate of the mass matrix is shown below. It is greatly simplified; only

the diagonal (dominant) terms of the matrix are calculated. The actual mass matrix

of the PUMA is a symmetric non-diagonal matrix. The complete equations for the

mass matrix can be found in [23, 26].

The equations and numerical values were obtained from [23]. The constants

were modified to take into account the mass of the gripper and force sensor attached

to the arm.

[42

where:

a44 0 0 0 0 0

0 ass 0 0 0 0

0 0 a66 0 0 0

0 0 0 a_'7 0 0

0 0 0 0 ass 0

0 0 0 0 0 a99

(c.3)

_ " C
a44 -- 1.58+ 1.441CsCs --[- 0.6474Ss6S56 -0.0484l S56 56 _-

-0.05977 (SsS8 ($56Ss6 (1.0 + C7C7) - 1.0) - 2.0 Ss6Cs6CTSsC8) +

1.3322 CsSs6 - 0.04898 CsCs6 + 0.1819 (SssSs6Cs + Ss6Cs6CT S8) +

0.1814 Cs ($56Cs + Cs6CTSs) + 0.06262 S-:$8

ass = 7.4461 + 1.3322 Ss - 0.05977 SrSTSsS8 - 0.04898 C6 +

0.1819 C8 + 0.1814 ($6C8 + CsCrS8)

a66 = 1.5151 - 0.05977SrSrS8Ss + 0.1819C8

a-rr = 0.2028 - 0.0598 SsS8

ass = 0.2404

a99 = 0.1942

